cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A223255 T(n,k)=Two-loop graph coloring a rectangular array: number of nXk 0..4 arrays where 0..4 label nodes of a graph with edges 0,1 1,2 2,0 0,3 3,4 4,0 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.

Original entry on oeis.org

5, 12, 12, 32, 52, 32, 80, 236, 236, 80, 208, 1076, 2172, 1076, 208, 528, 4908, 17828, 17828, 4908, 528, 1360, 22388, 166892, 307144, 166892, 22388, 1360, 3472, 102124, 1382228, 5359892, 5359892, 1382228, 102124, 3472, 8912, 465844, 12894316
Offset: 1

Views

Author

R. H. Hardin Mar 18 2013

Keywords

Comments

Table starts
.....5......12.........32............80...............208..................528
....12......52........236..........1076..............4908................22388
....32.....236.......2172.........17828............166892..............1382228
....80....1076......17828........307144...........5359892.............93770308
...208....4908.....166892.......5359892.........200258884...........6581646956
...528...22388....1382228......93770308........6581646956.........465277782336
..1360..102124...12894316....1641741608......247417877452.......32969186423292
..3472..465844..107283636...28748561780.....8146965446276.....2337308796813336
..8912.2124972..996653548..503440061060...306270743418628...165726502883851820
.22800.9693172.8326150836.8816254627208.10089859264898796.11751198778793357708

Examples

			Some solutions for n=3 k=4
..1..0..3..4....0..1..2..1....0..1..0..1....2..0..4..0....0..1..0..3
..0..3..0..3....3..0..1..0....4..0..1..0....0..1..0..4....3..0..4..0
..1..0..2..0....0..1..0..1....0..2..0..2....2..0..1..0....0..1..0..1
		

Crossrefs

Column 1 is A183682(n-1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +4*a(n-2)
k=2: a(n) = 5*a(n-1) -2*a(n-2)
k=3: a(n) = 2*a(n-1) +75*a(n-2) -126*a(n-3) -70*a(n-4) +48*a(n-5)
k=4: a(n) = 20*a(n-1) -28*a(n-2) -299*a(n-3) +436*a(n-4) +476*a(n-5) -460*a(n-6) for n>7
k=5: [order 16]
k=6: [order 24] for n>25
k=7: [order 59]
Showing 1-1 of 1 results.