cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183699 Decimal expansion of zeta(2)*zeta(3), the product of two Riemann zeta values.

This page as a plain text file.
%I A183699 #18 Jun 12 2023 02:54:17
%S A183699 1,9,7,7,3,0,4,3,5,0,2,9,7,2,9,6,1,1,8,1,9,7,0,8,5,4,4,1,4,8,5,1,2,5,
%T A183699 5,7,2,0,8,2,1,5,1,4,6,6,6,6,0,1,3,4,2,0,8,6,9,5,8,2,2,2,7,7,0,5,4,7,
%U A183699 1,5,0,3,4,1,4,6,6,0,4,2,0,7,7,0,2,3,8,4,3,7,2,5,2,1,7,4,9,6,0,7,3,7,2,0,9,4,2,8,5,8,1,3,3,5,4,1,2,9,7,8,2,2,3,7,5,9,0,2,6,3,3,1,1,4,1,4,6,6,4,0,2,0,1,0,5,9,3,6,3,6,8,3,2
%N A183699 Decimal expansion of zeta(2)*zeta(3), the product of two Riemann zeta values.
%C A183699 Equals the Dirichlet zeta-function Sum_{n>=1} A000203(n)/n^s at s=3.
%F A183699 Equals A013661 * A002117.
%e A183699 Equals 1.977304350297296118197085441485...
%p A183699 evalf(Zeta(2)*Zeta(3));
%t A183699 RealDigits[Zeta[2] * Zeta[3], 10, 120][[1]] (* _Amiram Eldar_, Jun 12 2023 *)
%o A183699 (PARI) zeta(2)*zeta(3) \\ _Charles R Greathouse IV_, Mar 04 2015
%Y A183699 Cf. A000203, A013661, A002117, A347213.
%Y A183699 Cf. A183700 (s=4).
%K A183699 nonn,cons
%O A183699 1,2
%A A183699 _R. J. Mathar_, Jan 06 2011