This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183712 #41 Mar 02 2025 23:20:40 %S A183712 5,17,54,174,559,1797,5776,18566,59677,191821,616574,1981866,6370351, %T A183712 20476345,65817520,211558554,680016837,2185791545,7025832918, %U A183712 22583273462,72589861759,233327025821,749987665760,2410700161342,7748761123965,24906995867477 %N A183712 1/20 of the number of (n+1) X 3 0..4 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease. %C A183712 Column 2 of A183719. [Corrected by _M. F. Hasler_, Oct 07 2014] %C A183712 This sequence counts closed walks of length (n+2) at the vertex of a triangle, to which a loop has been added to one of the remaining vertices and two loops has been added to the third vertex. - _David Neil McGrath_, Sep 04 2014 %C A183712 From _Greg Dresden_, Mar 02 2025: (Start) %C A183712 a(n) is the number of ways to tile, with squares and dominoes, a 2 X n board with two extra spaces at the end. Here is the board for n=3: %C A183712 _____ %C A183712 |_|_|_|_ _ %C A183712 |_|_|_|_|_|, %C A183712 and here is one of the a(3)=54 possible tilings of this board: %C A183712 _____ %C A183712 |___| |___ %C A183712 |_|_|_|___|. %C A183712 Compare to A033505 (tilings of 2 X n board with one extra space at the end) and A030186 (tilings of 2 X n board with no extra spaces at the end). (End) %H A183712 R. H. Hardin, <a href="/A183712/b183712.txt">Table of n, a(n) for n = 1..200</a> %H A183712 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,1,-1). %F A183712 a(n) = 3*a(n-1) + a(n-2) - a(n-3). %F A183712 The top left element of A^(n+2) where A=(0,1,1;1,1,1;1,1,2). - _David Neil McGrath_, Sep 04 2014 %F A183712 a(n) ~ c*k^n where k = 1.629316... is the largest root of x^3 - 3x^2 - x + 1 and c = 1.6293... is conjecturally the largest root of 148x^3 - 296x^2 + 90x - 1. - _Charles R Greathouse IV_, Sep 15 2014 %F A183712 G.f.: x*(5+2*x-2*x^2) / (1-3*x-x^2+x^3). - _Colin Barker_, Mar 16 2016 %F A183712 a(n) = A030186(n) + A033505(n). - _Greg Dresden_, Mar 02 2025 %e A183712 Some solutions for 5 X 3: %e A183712 ..0..1..4....1..2..0....4..0..4....4..3..4....4..0..4....1..4..0....3..4..2 %e A183712 ..3..2..3....0..3..4....2..1..3....0..2..0....3..2..3....2..3..1....1..0..1 %e A183712 ..4..1..0....1..2..1....4..0..4....4..3..4....0..1..0....0..4..0....2..4..3 %e A183712 ..3..2..3....0..3..4....3..2..3....0..2..1....4..2..3....1..3..1....1..0..1 %e A183712 ..4..0..4....1..2..1....4..1..0....4..3..0....0..1..0....0..4..0....2..3..2 %e A183712 ... %e A183712 ...R..L.......R..L.......R..L.......L..R.......R..L.......L..R.......R..L... %e A183712 ...L..R.......L..R.......L..R.......R..L.......L..R.......R..L.......L..R... %e A183712 ...R..L.......R..L.......R..L.......L..R.......R..L.......L..R.......R..L... %e A183712 ...L..R.......L..R.......L..R.......R..L.......L..R.......R..L.......L..R... %o A183712 (PARI) a(n)=([0,1,1;1,1,1;1,1,2]^(n+2))[1,1] \\ _Charles R Greathouse IV_, Sep 15 2014 %o A183712 (PARI) Vec(x*(5+2*x-2*x^2)/(1-3*x-x^2+x^3) + O(x^50)) \\ _Colin Barker_, Mar 16 2016 %Y A183712 Cf. A183727, A183719, A030186, A033505. %K A183712 nonn,walk,easy %O A183712 1,1 %A A183712 _R. H. Hardin_, Jan 06 2011