A183721 1/12 the number of (n+1) X 2 0..5 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.
0, 1, 12, 87, 537, 3070, 16731, 88331, 455804, 2311983, 11571209, 57295330, 281223411, 1370286715, 6635743136, 31964799247, 153273890393, 732031932806, 3483896304443, 16529018119643, 78202676604548, 369073777749215
Offset: 1
Keywords
Examples
All solutions with the first block increasing clockwise for 3 X 2: ..3..4....1..2....4..5....2..3....5..0....0..1 ..2..5....0..3....3..0....1..4....4..1....5..2 ..1..0....5..4....2..1....0..5....3..2....4..3 ... ...R.......R.......R.......R.......R.......R... ...R.......R.......R.......R.......R.......R...
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A183729.
Formula
Empirical: a(n) = 8*a(n-1) - 11*a(n-2) - 23*a(n-3) + 6*a(n-4) + 7*a(n-5) - 2*a(n-6).
Empirical g.f.: x^2*(1 + 2*x - x^2)^2 / ((1 + x)*(1 - 5*x + 2*x^2)*(1 - 4*x - 2*x^2 + x^3)). - Colin Barker, Apr 04 2018
Comments