cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A183731 1/16 the number of (n+1) X 3 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

21, 290, 13169, 550268, 19849923, 667017027, 21320890377, 659741463420, 19939380387212, 592112324464323, 17343862233069362, 502495529472928971, 14428841233622907321, 411240107421964502725, 11647315145815312830954
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 2 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 3:
..7..0..6....6..7..0....3..5..4....6..1..7....0..2..0....0..1..2....0..2..7
..4..1..4....4..2..1....2..7..3....5..2..5....7..3..7....6..4..3....7..3..6
..3..2..3....6..7..0....1..0..1....4..3..4....6..4..5....7..1..2....5..4..5
...
...R..L.......R..R.......R..L.......R..L.......R..L.......R..R.......R..L...
...R..L.......L..L.......R..L.......R..L.......R..L.......L..L.......R..L...
		

Formula

Empirical: a(n)=59*a(n-1)-983*a(n-2)+1517*a(n-3)+56964*a(n-4)-301681*a(n-5)-391561*a(n-6)+6287597*a(n-7)-12340851*a(n-8)-17981853*a(n-9)+86923852*a(n-10)-42259832*a(n-11)-195169753*a(n-12)+251286677*a(n-13)+147371126*a(n-14)-407605405*a(n-15)+42991424*a(n-16)+309052737*a(n-17)-122546216*a(n-18)-125908592*a(n-19)+73571657*a(n-20)+29253790*a(n-21)-21987805*a(n-22)-3922294*a(n-23)+3666493*a(n-24)+284823*a(n-25)-339999*a(n-26)-7395*a(n-27)+16089*a(n-28)-300*a(n-29)-300*a(n-30)+16*a(n-31).

A183730 1/16 the number of (n+1) X 2 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

0, 21, 563, 9403, 135578, 1814815, 23204876, 287769879, 3491293862, 41667398364, 490998416023, 5727556631915, 66266101711488, 761498455531330, 8701271226331052, 98948856313647335, 1120614615517688964
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 1 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 2:
..4..5....6..0....1..2....1..2....2..4....4..5....7..0....2..3....0..2....0..2
..2..6....5..1....7..4....0..3....0..5....1..6....6..1....1..4....7..3....6..3
..1..7....4..2....6..5....7..4....7..6....0..7....4..3....0..7....6..4....5..4
...
...R.......R.......R.......R.......R.......R.......R.......R.......R.......R...
...R.......R.......R.......R.......R.......R.......R.......R.......R.......R...
		

Formula

Empirical: a(n)=18*a(n-1)-46*a(n-2)-342*a(n-3)-33*a(n-4)+435*a(n-5)-157*a(n-6)-37*a(n-7)+21*a(n-8)-2*a(n-9).

A183732 1/16 the number of (n+1) X 4 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

563, 13169, 469254, 32555965, 2610816897, 211915469907, 16635894447271, 1270931982853879, 94993985142144635, 6981985010723242050, 506415863251104840544, 36341705193868254651896, 2585229289237578869949797
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 3 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 4:
..3..6..4..3....4..5..4..3....5..1..7..6....2..4..6..4....5..1..0..7
..1..0..1..2....0..7..0..1....3..2..3..4....1..0..7..0....4..3..4..5
..5..7..6..3....5..6..4..3....6..1..7..5....4..5..6..4....5..2..0..7
...
...R..L..L.......R..L..L.......R..L..L.......R..R..L.......R..L..L...
...L..R..R.......L..R..R.......L..R..R.......L..L..R.......L..R..R...
		

A183733 1/16 the number of (n+1) X 5 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

9403, 550268, 32555965, 3202350892, 470757143497, 85938883577009, 16327766532728500, 3094892136980310870, 579019469263278106043, 106955380615838654906545, 19539849220501390068072761
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 4 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 5:
..0..1..2..0..2....0..3..2..3..4....4..6..0..3..7....4..6..2..3..4
..7..4..3..6..5....7..6..0..6..5....3..2..1..2..1....3..0..1..7..6
..6..5..1..0..2....3..5..2..3..4....4..5..7..4..5....4..6..2..3..5
...
...R..R..L..R.......R..L..R..R.......R..R..L..R.......R..L..R..R...
...R..L..R..L.......L..R..L..L.......L..L..R..L.......L..R..L..L...
		

A183734 1/16 the number of (n+1) X 6 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

135578, 19849923, 2610816897, 470757143497, 121627738709359, 45102927396897679, 19628509753968319015, 8974005118250282637773, 4133062481661217572719434
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 5 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 6:
..0..1..0..6..7..6....0..1..0..7..0..6....0..1..0..7..1..5....0..1..0..7..1..6
..3..2..3..5..0..1....3..2..4..5..3..5....3..2..4..5..2..3....3..2..4..6..2..3
..4..1..0..6..7..3....0..1..0..7..0..7....4..1..0..7..1..5....0..1..0..7..1..6
...
...R..L..L..R..L.......R..L..L..R..L.......R..L..L..R..L.......R..L..L..R..L...
...L..R..R..L..R.......L..R..R..L..R.......L..R..R..L..R.......L..R..R..L..R...
		

Crossrefs

Cf. A183738.

A183735 1/16 the number of (n+1) X 7 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

1814815, 667017027, 211915469907, 85938883577009, 45102927396897679
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 6 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 7:
..0..1..0..5..0..7..1....0..1..0..6..0..7..1....0..1..0..5..0..5..0
..3..2..3..4..3..5..4....3..2..3..4..2..5..3....3..2..3..4..1..3..2
..0..1..0..5..7..6..3....0..1..0..5..1..6..2....0..1..0..6..0..6..1
...
...R..L..L..R..L..R.......R..L..L..R..L..R.......R..L..L..R..L..R...
...L..R..R..L..R..L.......L..R..R..L..R..L.......L..R..R..L..R..L...
		

A183736 1/16 the number of (n+1) X 8 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

23204876, 21320890377, 16635894447271, 16327766532728500, 19628509753968319015
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 7 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 8:
..0..1..0..1..7..5..2..0....0..1..0..1..0..1..0..7....0..1..0..1..5..0..1..5
..3..2..3..2..3..4..3..5....3..2..3..2..5..4..5..6....3..2..3..2..4..3..2..4
..0..1..0..1..0..6..7..6....0..1..0..1..7..3..2..0....0..1..0..1..7..0..1..5
...
...R..L..R..L..L..R..L.......R..L..R..L..R..L..L.......R..L..R..L..R..R..L...
...L..R..L..R..R..L..R.......L..R..L..R..L..R..R.......L..R..L..R..L..L..R...
		

A183737 1/16 the number of (n+1) X 9 0..7 arrays with every 2 X 2 subblock strictly increasing clockwise or counterclockwise with one decrease, and at least two adjacent blocks having the same increasing direction.

Original entry on oeis.org

287769879, 659741463420, 1270931982853879, 3094892136980310870, 8974005118250282637773
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2011

Keywords

Comments

Column 8 of A183738.

Examples

			Some solutions with the first block increasing clockwise for 3 X 9:
..0..1..0..1..0..6..1..6..7....0..1..0..1..0..7..0..6..7
..3..2..3..2..4..5..3..4..2....3..2..3..2..4..5..2..3..1
..0..1..0..1..0..6..1..5..0....0..1..0..1..0..6..7..4..7
...
...R..L..R..L..L..R..L..R.......R..L..R..L..L..R..L..R...
...L..R..L..R..R..L..R..L.......L..R..L..R..R..L..R..L...
		
Showing 1-8 of 8 results.