A183761 Number of 2 X 2 nonsingular 0..n matrices with rows in increasing order.
3, 25, 96, 256, 563, 1073, 1880, 3056, 4715, 6961, 9944, 13752, 18603, 24601, 31936, 40800, 51427, 63937, 78664, 95720, 115435, 138057, 163888, 193064, 226059, 263089, 304480, 350528, 401715, 458145, 520488, 588872, 663803, 745681, 834872, 931736
Offset: 1
Keywords
Examples
Some solutions for n=2: ..1..0....1..0....1..2....0..2....1..1....1..1....0..1....2..0....0..2....1..2 ..2..2....1..2....2..1....1..0....2..0....1..2....2..0....2..1....1..2....2..2 Contribution from _Clark Kimberling_, Mar 19 2012: (Start) As an example for counting positive determinants (see Comments), the 3 matrices counted by a(1) are 1 0.....1 1.....1 0 0 1.....0 1.....1 1 (End)
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A062801.
Programs
-
Mathematica
a = 0; b = n; z1 = 45; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}] Table[c1[n, n^2] - c[n, 0], {n, 0, z1}] (* Clark Kimberling, Mar 19 2012 *)
Formula
a(n) = A062801(n)/2. - David Radcliffe, Aug 13 2025
Comments