This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183821 #16 Aug 12 2018 02:43:48 %S A183821 15,813,43947,2377341,128578815,6954559893,376152548283, %T A183821 20345104031589,1100412240703119,59518368554767389, %U A183821 3219189893127084843,174117402720326269485,9417546276713264441151,509369980225226329837125 %N A183821 1/256 the number of (n+1) X 3 0..3 arrays with no 2 X 2 subblock being a reflection across the shared element pair of any horizontal or vertical neighbor. %C A183821 Column 2 of A183827. %H A183821 R. H. Hardin, <a href="/A183821/b183821.txt">Table of n, a(n) for n = 1..147</a> %H A183821 Robert Israel, <a href="/A183821/a183821.pdf">Maple-assisted proof of formula</a> %F A183821 Empirical: a(n) = 43*a(n-1) + 645*a(n-2) - 2451*a(n-3). %F A183821 Empirical g.f.: 3*x*(5 + 56*x - 229*x^2) / (1 - 43*x - 645*x^2 + 2451*x^3). - _Colin Barker_, Apr 05 2018 %F A183821 Empirical formulas verified (see link). - _Robert Israel_, Aug 10 2018 %e A183821 Some solutions with upper left block zero for 5 X 3: %e A183821 0 0 2 0 0 0 0 0 3 0 0 3 0 0 0 0 0 2 0 0 0 %e A183821 0 0 0 0 0 1 0 0 3 0 0 2 0 0 1 0 0 1 0 0 2 %e A183821 2 0 0 2 0 1 3 0 2 1 0 2 1 0 3 1 0 0 3 0 1 %e A183821 2 2 1 3 2 3 1 3 1 1 3 1 0 3 3 2 1 2 0 3 3 %e A183821 3 2 3 0 0 3 0 0 3 2 0 3 3 2 2 0 0 3 2 2 0 %p A183821 Configs:= remove(t -> [t[1],t[4]]=[t[3],t[6]], [seq(convert(4^6+i,base,4)[1..6],i=0..4^6-1)]): nConfigs:= nops(Configs): %p A183821 Compatible:= proc(i,j) local k; %p A183821 if Configs[i][4..6] <> Configs[j][1..3] or Configs[i][1..2] =Configs[j][4..5] or Configs[i][2..3] = Configs[j][5..6] then 0 else 1 fi; %p A183821 end proc: %p A183821 T:= Matrix(nConfigs,nConfigs,Compatible): %p A183821 u:= Vector(nConfigs,1): %p A183821 Tu[0]:= u: %p A183821 for n from 1 to 30 do Tu[n]:= T . Tu[n-1] od: %p A183821 seq(u^%T . Tu[n]/256, n=0..30); # _Robert Israel_, Aug 10 2018 %Y A183821 Cf. A183827. %K A183821 nonn %O A183821 1,1 %A A183821 _R. H. Hardin_, Jan 07 2011