This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183867 #25 Jul 28 2025 08:59:46 %S A183867 3,4,6,8,9,10,12,13,15,16,17,18,20,21,22,24,25,26,27,28,30,31,32,33, %T A183867 35,36,37,38,39,40,42,43,44,45,46,48,49,50,51,52,53,54,56,57,58,59,60, %U A183867 61,63,64,65,66,67,68,69,70,72,73,74,75,76,77,78,80,81,82,83 %N A183867 a(n) = n + floor(2*sqrt(n)); complement of A184676. %C A183867 Also equals n + floor(sqrt(n) + sqrt(n+1/2)). Proof: floor(2*sqrt(n)) is the largest k such that k^2/4 <= n, while floor(sqrt(n) + sqrt(n+1/2)) is the largest k such that (k^2 - 1)/4 + 1/(16*k^2) <= n. All perfect squares are 0 or 1 (mod 4). In either case, it is easily verified that one of the inequalities is satisfied if and only if the other inequality is satisfied. - _Nathaniel Johnston_, Jun 26 2011 %H A183867 Nathaniel Johnston, <a href="/A183867/b183867.txt">Table of n, a(n) for n = 1..5000</a> %p A183867 seq(n+floor(2*sqrt(n)), n=1..67); # _Nathaniel Johnston_, Jun 26 2011 %t A183867 a=4; b=0; %t A183867 Table[n+Floor[(a*n+b)^(1/2)],{n,100}] %t A183867 Table[n-1+Ceiling[(n*n-b)/a],{n,70}] %o A183867 (PARI) a(n) = n+sqrtint(4*n); \\ _Michel Marcus_, Dec 08 2015, Jul 28 2025 %o A183867 (Magma) [n+Floor(2*Sqrt(n)): n in [1..100]]; // _Vincenzo Librandi_, Dec 09 2015 %Y A183867 Cf. A179272. %K A183867 nonn,easy %O A183867 1,1 %A A183867 _Clark Kimberling_, Jan 07 2011