This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183875 #30 Aug 08 2018 15:11:03 %S A183875 1,4,1,24,8,1,176,64,12,1,1440,544,120,16,1,12608,4864,1168,192,20,1, %T A183875 115584,45184,11424,2112,280,24,1,1095424,432128,113088,22528,3440, %U A183875 384,28,1,10646016,4227584,1133952,237824,39840,5216,504,32,1,105522176,42115072,11506944,2505728,448064,65280,7504,640,36,1 %N A183875 Triangle T(n,k) for A(x)^k=sum(n>=k T(n,k)*x^n), where o.g.f. A(x) satisfies A(x)=(a+b*x*A(x))/(c-d*x*A(x)), a=1,b=2,c=1,d=2. %C A183875 For o.g.f G(x), G(A(x,a,b,c,d))=g(0)+sum(n>0, sum(k=1..n, T(n,k,a,b,c,d)*g(k))x^n). %C A183875 T(n,k,1,1,1,1)=A080247(n,k), %C A183875 T(n,k,2,-1,1,1)=A108891(n,k), %C A183875 T(n,k,1,-2,1,1)=A125692(n,k), %C A183875 T(n,k,1,-3,1,1)=A125694(n,k), %C A183875 T(n,k,-2,1,1,1)=A085403(n,k). %H A183875 Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013. %F A183875 T(n,k,a,b,c,d):=k/n*sum(i=0..n-k, binomial(n,n-k-i)*a^(k+i)*b^(n-k-i)*binomial(i+n-1,n-1)*c^(-i-n)*d^i), a,b,c,d !=0, n>0. %F A183875 T(n,k,1,2,1,2):=k/n*2^(n-k)*sum(i=0..n-k, binomial(n,n-k-i)*binomial(i+n-1,n-1)), n>0. %F A183875 Conjecture: T(n,1) = A156017(n-1). - _R. J. Mathar_, Nov 14 2011 %e A183875 1, %e A183875 4,1, %e A183875 24,8,1, %e A183875 176,64,12,1, %e A183875 1440,544,120,16,1, %e A183875 12608,4864,1168,192,20,1, %e A183875 115584,45184,11424,2112,280,24,1, %e A183875 1095424,432128,113088,22528,3440,384,28,1, %e A183875 10646016,4227584,1133952,237824,39840,5216,504,32,1, %e A183875 105522176,42115072,11506944,2505728,448064,65280,7504,640,36,1 %t A183875 T[n_, k_, a_, b_, c_, d_] := k/n Sum[Binomial[n, n - k - i] a^(k + i) b^(n - k - i) Binomial[i + n - 1, n - 1] c^(-i - n) d^i, {i, 0, n - k}]; %t A183875 T[n_, k_] := T[n, k, 1, 2, 1, 2]; %t A183875 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Aug 08 2018, from formula *) %K A183875 nonn,tabl %O A183875 1,2 %A A183875 _Vladimir Kruchinin_, Feb 12 2011