This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183877 #17 Sep 30 2018 20:22:52 %S A183877 1,31,171,631,2059,6399,19483,58807,176859,531103,1593931,4782519, %T A183877 14348395,43046143,129139515,387419767,1162260667,3486783519, %U A183877 10460352235,31381058551,94143177675,282429535231,847288608091,2541865826871 %N A183877 Number of arrangements of n+2 numbers in 0..2 with each number being the sum mod 3 of two others. %H A183877 R. H. Hardin, <a href="/A183877/b183877.txt">Table of n, a(n) for n = 1..200</a> %F A183877 Empirical (for n>=2): 3^(n+2) - 2*(n+3)^2. - _Vaclav Kotesovec_, Nov 27 2012 %F A183877 Conjectures from _Colin Barker_, Apr 05 2018: (Start) %F A183877 G.f.: x*(1 + 25*x - 3*x^2 - 33*x^3 + 18*x^4) / ((1 - x)^3*(1 - 3*x)). %F A183877 a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4) for n>5. %F A183877 (End) %F A183877 Conjecture is true. The complement consists of arrangements of the forms %F A183877 1*, 2*, 01*, 02*, 10*, 12*, 20*, 21*, 001*, 002* and 120*. _Robert Israel_, Sep 30 2018 %e A183877 Some solutions for n=4: %e A183877 ..2....1....1....2....1....2....2....2....0....1....2....1....2....1....0....2 %e A183877 ..2....0....2....1....0....2....0....2....2....0....1....1....2....0....1....1 %e A183877 ..1....0....2....0....0....1....0....1....1....0....1....2....0....0....1....0 %e A183877 ..1....2....2....0....2....1....0....0....2....2....0....1....1....2....1....1 %e A183877 ..1....1....1....2....2....1....0....0....0....2....0....2....0....0....2....1 %e A183877 ..2....2....1....1....2....0....2....0....0....1....1....0....0....1....0....2 %p A183877 1, seq(3^(n+2)-2*(n+3)^2, n=2..30); # _Robert Israel_, Sep 30 2018 %Y A183877 Column 2 of A183884. %K A183877 nonn %O A183877 1,2 %A A183877 _R. H. Hardin_, Jan 07 2011