A183897 Number of nondecreasing arrangements of n+3 numbers in 0..2 with each number being the sum mod 3 of three others.
1, 7, 17, 25, 34, 44, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220, 242, 265, 289, 314, 340, 367, 395, 424, 454, 485, 517, 550, 584, 619, 655, 692, 730, 769, 809, 850, 892, 935, 979, 1024, 1070, 1117, 1165, 1214, 1264, 1315, 1367, 1420, 1474, 1529, 1585, 1642
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0....0....0....0....1....0....0....0....1....0....0....0....0....0....0....0 ..1....1....0....0....1....0....0....0....1....0....0....0....0....0....1....0 ..1....1....2....0....1....0....1....0....1....0....1....0....0....1....1....1 ..2....1....2....0....2....1....1....0....1....1....1....0....0....1....1....1 ..2....1....2....1....2....1....1....2....2....2....2....0....1....1....1....1 ..2....2....2....1....2....1....1....2....2....2....2....1....2....1....1....2 ..2....2....2....1....2....1....1....2....2....2....2....1....2....2....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..62
- Charles Cratty, Samuel Erickson, Frehiwet Negass, Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
Crossrefs
Cf. A183904.
Formula
Empirical: a(n) = (1/2)*n^2 + (9/2)*n - 1 for n>2.
Conjectures from Colin Barker, Apr 05 2018: (Start)
G.f.: x*(1 + x - x^2)*(1 + 3*x - 3*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>5.
(End)
Comments