A183898 Number of nondecreasing arrangements of n+3 numbers in 0..3 with each number being the sum mod 4 of three others.
5, 14, 38, 70, 111, 162, 224, 298, 385, 486, 602, 734, 883, 1050, 1236, 1442, 1669, 1918, 2190, 2486, 2807, 3154, 3528, 3930, 4361, 4822, 5314, 5838, 6395, 6986, 7612, 8274, 8973, 9710, 10486, 11302, 12159, 13058, 14000, 14986, 16017, 17094, 18218, 19390
Offset: 1
Keywords
Examples
All solutions for n=2: ..0....2....0....1....0....0....1....1....0....0....0....1....0....0 ..2....2....0....3....1....0....1....1....0....0....1....1....1....0 ..2....2....2....3....1....0....3....1....2....0....2....1....1....1 ..3....2....3....3....2....0....3....3....2....2....3....1....2....1 ..3....2....3....3....3....0....3....3....2....2....3....3....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..62
Crossrefs
Cf. A183904.
Formula
Empirical: a(n) = (1/6)*n^3 + (5/2)*n^2 + (25/3)*n - 14 for n>1.
Conjectures from Colin Barker, Apr 05 2018: (Start)
G.f.: x*(5 - 6*x + 12*x^2 - 18*x^3 + 8*x^4) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>5.
(End)
Comments