A183901 Number of nondecreasing arrangements of n+3 numbers in 0..6 with each number being the sum mod 7 of three others.
1, 1, 136, 664, 1720, 3491, 6263, 10400, 16357, 24694, 36091, 51364, 71482, 97585, 131003, 173276, 226175, 291724, 372223, 470272, 588796, 731071, 900751, 1101896, 1339001, 1617026, 1941427, 2318188, 2753854, 3255565, 3831091, 4488868, 5238035
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0....0....3....0....0....0....0....0....0....0....0....1....0....0....2....1 ..1....0....3....1....0....0....0....3....2....1....1....1....3....0....4....2 ..1....1....3....1....1....3....1....4....3....2....4....2....3....1....4....3 ..2....1....4....4....2....3....1....5....4....3....5....3....4....2....5....3 ..4....2....4....4....2....5....3....6....4....4....5....4....5....4....5....5 ..4....4....4....6....4....6....3....6....6....4....6....5....5....4....6....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..37
Crossrefs
Cf. A183904.
Formula
Empirical: a(n) = (1/720)*n^6 + (13/240)*n^5 + (125/144)*n^4 + (117/16)*n^3 + (12287/360)*n^2 - (4421/30)*n - 44 for n>3.
Conjectures from Colin Barker, Apr 05 2018: (Start)
G.f.: x*(1 - 6*x + 150*x^2 - 302*x^3 - 72*x^4 + 649*x^5 - 548*x^6 + 60*x^7 + 102*x^8 - 33*x^9) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>10.
(End)
Comments