This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A183917 #20 May 12 2025 11:53:42 %S A183917 1,1,2,1,3,2,1,4,5,3,1,5,8,8,3,1,6,13,18,12,4,1,7,18,33,32,18,4,1,8, %T A183917 25,55,73,58,24,5,1,9,32,86,141,151,94,33,5,1,10,41,126,252,338,289, %U A183917 151,43,6,1,11,50,177,414,676,734,526,227,55,6,1,12,61,241,649,1242,1656,1514 %N A183917 T(n,k) = number of nondecreasing arrangements of n numbers in -k..k with sum zero. %H A183917 R. H. Hardin, <a href="/A183917/b183917.txt">Table of n, a(n) for n = 1..1350</a> %H A183917 David J. Hemmer and Karlee J. Westrem, <a href="https://arxiv.org/abs/2402.02250">Palindrome Partitions and the Calkin-Wilf Tree</a>, arXiv:2402.02250 [math.CO], 2024. See Definition 5.1, p. 8. %H A183917 Karlee J. Westrem, <a href="https://digitalcommons.mtu.edu/etdr/1892/">Schaper numbers, palindrome partitions, and symmetric functions, with applications to characters of the symmetric group</a>, Ph. D. Dissertation, Michigan Tech. Univ. (2025). See p. 55. %e A183917 Table starts %e A183917 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A183917 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A183917 2 5 8 13 18 25 32 41 50 61 72 85 98 %e A183917 3 8 18 33 55 86 126 177 241 318 410 519 645 %e A183917 3 12 32 73 141 252 414 649 967 1394 1944 2649 3523 %e A183917 4 18 58 151 338 676 1242 2137 3486 5444 8196 11963 17002 %e A183917 4 24 94 289 734 1656 3370 6375 11322 19138 30982 48417 73316 %e A183917 5 33 151 526 1514 3788 8512 17575 33885 61731 107233 178870 288100 %e A183917 5 43 227 910 2934 8150 20094 45207 94257 184717 343363 610358 1043534 %e A183917 6 55 338 1514 5448 16660 44916 109583 246448 517971 1028172 1943488 3521260 %e A183917 Some solutions for n=5: %e A183917 -2 -4 -4 -4 -4 -1 -4 -3 -4 -3 -1 -4 -3 -3 -2 -4 %e A183917 -2 0 0 -1 -2 0 -2 -2 -1 -3 -1 -4 0 -2 0 -3 %e A183917 0 0 0 0 -1 0 1 -1 1 0 0 1 0 1 0 -1 %e A183917 0 1 2 2 3 0 2 3 2 3 0 3 0 1 1 4 %e A183917 4 3 2 3 4 1 3 3 2 3 2 4 3 3 1 4 %o A183917 (Python) %o A183917 from sympy.utilities.iterables import partitions %o A183917 def A183917_T(n,k): return sum(1 for p in partitions(k*n,m=n,k=k<<1)) # _Chai Wah Wu_, Aug 27 2024 %Y A183917 Column 2 is A001973. %Y A183917 Column 3 is A001977. %Y A183917 Column 4 is A001981. %Y A183917 Diagonal is A109655. %Y A183917 Row 3 is A000982(n+1). %K A183917 nonn,tabl %O A183917 1,3 %A A183917 _R. H. Hardin_, Jan 07 2011