cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A183913 Number of nondecreasing arrangements of n numbers in -5..5 with sum zero.

Original entry on oeis.org

1, 6, 18, 55, 141, 338, 734, 1514, 2934, 5448, 9686, 16660, 27718, 44916, 70922, 109583, 165821, 246448, 360002, 517971, 734517, 1028172, 1421530, 1943488, 2628824, 3521260, 4672836, 6147894, 8022362, 10388788, 13355414, 17052653
Offset: 1

Views

Author

R. H. Hardin Jan 07 2011

Keywords

Comments

Column 5 of A183917

Examples

			Some solutions for n=4
.-5...-4...-4...-5...-4...-4...-3...-4...-4...-2...-3...-5...-3...-1...-3...-3
.-1...-1...-2....0...-4....0...-3...-2....1...-1...-1...-2....0....0...-2...-1
..2....1....1....0....3....1....1....2....1...-1...-1....2....1....0....0....1
..4....4....5....5....5....3....5....4....2....4....5....5....2....1....5....3
		

Formula

Empirical: a(n)=a(n-1)+2*a(n-2)-a(n-3)-a(n-4)-a(n-5)+a(n-9)-a(n-10)+3*a(n-12)+a(n-13)-a(n-14)-a(n-16)-2*a(n-17)-a(n-18)-a(n-20)+a(n-22)+2*a(n-23)+2*a(n-24)+a(n-25)-a(n-27)-a(n-29)-2*a(n-30)-a(n-31)-a(n-33)+a(n-34)+3*a(n-35)-a(n-37)+a(n-38)-a(n-42)-a(n-43)-a(n-44)+2*a(n-45)+a(n-46)-a(n-47)

A183914 Number of nondecreasing arrangements of n numbers in -6..6 with sum zero.

Original entry on oeis.org

1, 7, 25, 86, 252, 676, 1656, 3788, 8150, 16660, 32540, 61108, 110780, 194668, 332578, 553981, 901723, 1437269, 2247151, 3451798, 5216252, 7764392, 11396054, 16509188, 23626234, 33427622, 46791278, 64841876, 89008530, 121095602, 163364972
Offset: 1

Views

Author

R. H. Hardin Jan 07 2011

Keywords

Comments

Column 6 of A183917

Examples

			Some solutions for n=4
.-5...-6...-2...-5...-3...-4...-6...-3...-4...-5...-6...-4...-4...-3...-6...-3
..0...-1...-1....0...-3....1...-1....1...-3...-2...-3...-1...-3...-1....0...-2
..1....1....0....0....1....1....2....1....3....2....4....2....1....1....0...-1
..4....6....3....5....5....2....5....1....4....5....5....3....6....3....6....6
		

Formula

Empirical: a(n)=a(n-1)+2*a(n-2)-a(n-3)-a(n-4)-a(n-6)-2*a(n-7)+a(n-8)+2*a(n-9)+a(n-11)+2*a(n-12)-a(n-13)-a(n-14)+2*a(n-15)-a(n-16)-4*a(n-17)-3*a(n-20)+a(n-21)+3*a(n-22)+a(n-24)+4*a(n-25)-a(n-26)-a(n-27)+3*a(n-28)-a(n-29)-4*a(n-30)-4*a(n-33)-a(n-34)+3*a(n-35)-a(n-36)-a(n-37)+4*a(n-38)+a(n-39)+3*a(n-41)+a(n-42)-3*a(n-43)-4*a(n-46)-a(n-47)+2*a(n-48)-a(n-49)-a(n-50)+2*a(n-51)+a(n-52)+2*a(n-54)+a(n-55)-2*a(n-56)-a(n-57)-a(n-59)-a(n-60)+2*a(n-61)+a(n-62)-a(n-63)

A183915 Number of nondecreasing arrangements of n numbers in -7..7 with sum zero.

Original entry on oeis.org

1, 8, 32, 126, 414, 1242, 3370, 8512, 20094, 44916, 95514, 194668, 381676, 723354, 1328980, 2374753, 4136477, 7040196, 11728606, 19159798, 30734578, 48479188, 75277670, 115195490, 173885716, 259140928, 381577586, 555546058, 800247348
Offset: 1

Views

Author

R. H. Hardin Jan 07 2011

Keywords

Comments

Column 7 of A183917

Examples

			Some solutions for n=4
.-6...-6...-4...-2...-3...-5...-7...-6...-3...-5...-5...-2...-3...-1...-7...-2
.-2...-1...-4...-2...-1...-3....0...-3...-1...-2...-1....0...-2...-1...-7...-2
..2....0....4....0....1....4....0....4....2....3....3....1....1....0....7....1
..6....7....4....4....3....4....7....5....2....4....3....1....4....2....7....3
		

A183916 Number of nondecreasing arrangements of n numbers in -8..8 with sum zero.

Original entry on oeis.org

1, 9, 41, 177, 649, 2137, 6375, 17575, 45207, 109583, 252117, 553981, 1168261, 2374753, 4669367, 8908546, 16535154, 29927526, 52925886, 91617530, 155484150, 259062316, 424306230, 683919048, 1085984406, 1700352360, 2627337510
Offset: 1

Views

Author

R. H. Hardin Jan 07 2011

Keywords

Comments

Column 8 of A183917

Examples

			Some solutions for n=4
.-6...-7...-7...-3...-7...-7...-4...-4...-4...-1...-2...-8...-6...-4...-5...-8
.-3...-5....2...-1....0....1...-2....1...-3...-1...-2...-1....1....0...-1....1
..4....4....2....0....0....1....0....1....3....0....1....4....2....1....1....3
..5....8....3....4....7....5....6....2....4....2....3....5....3....3....5....4
		

A375783 Number of partitions with weight fixed by reversal.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 6, 2, 10, 2, 8, 14, 10, 2, 20, 2, 28, 28, 12, 2, 52, 28, 14, 52, 80, 2, 120, 2, 76, 90, 18, 198, 320, 2, 20, 142, 388, 2, 478, 2, 478, 872, 24, 2, 956, 506, 652, 304, 988, 2, 1852, 1944, 2210, 418, 30, 2, 5528, 2, 32, 5168, 2518, 5032
Offset: 1

Views

Author

Chai Wah Wu, Aug 28 2024

Keywords

Crossrefs

Programs

  • Python
    from sympy import divisors
    from sympy.utilities.iterables import partitions
    def A375783(n):
        def A183917_T(n,k): return sum(1 for p in partitions(k*n,m=n,k=k<<1))
        x = sum(A183917_T((n+1)//d-2,d-1) for d in divisors(n+1>>1, generator=True)) if n&1 else 0
        y = sum(A183917_T(d-2,(n+1)//d-1) for d in divisors((n+1)>>(~(n+1)&n).bit_length(), generator=True) if d>=3)<<1
        return x+y

Formula

a(n) = 2 if and only if n = 3 or n + 1 > 2 is prime (Hemmer and Westrem).
For proofs of the following, see A368548.
Let T(n,k) be the table in A183917.
Let x = 0 if n is even and x = Sum_{d|(n+1)/2} T((n+1)/d-2,d-1) if n is odd.
Let y = 2*Sum_{d|n+1, d>=3, and d is odd} T(d-2,(n+1)/d-1).
Then a(n) = x+y.
If n>3 is odd and (n+1)/2 is prime, then a(n) = A368548(n) = (n+3)/2.
a(2^n-1) = Sum_{i=0..n-1} T(2^(n-i)-2,2^i-1).
Showing 1-5 of 5 results.