cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183953 T(n,k) is the number of strings of numbers x(i=1..n) in 0..k with sum i^2*x(i) equal to k*n^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 4, 5, 1, 1, 2, 4, 8, 10, 7, 2, 1, 2, 6, 14, 27, 26, 10, 1, 1, 3, 7, 21, 53, 78, 61, 20, 3, 1, 3, 9, 32, 94, 180, 219, 147, 37, 3, 1, 3, 12, 48, 161, 398, 656, 649, 339, 77, 4, 1, 3, 14, 61, 259, 770, 1613, 2195, 1805, 771, 118, 2, 1, 4, 17
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

T(n,k) is the number of integer lattice points in k*C(n) where C(n) is the polytope in R^n defined by the equation Sum_{1<=i<=n} i^2*x_i = n^2 and the inequalities 0 <= x_i <= 1. The vertices of the polytope have rational coordinates. Thus row n of the table is an Ehrhart quasi-polynomial of degree n-1. - Robert Israel, Jul 10 2019

Examples

			Table starts
.1..1...1....1.....1.....1......1......1.......1.......1.......1........1
.1..1...1....2.....2.....2......2......3.......3.......3.......3........4
.1..2...2....3.....4.....6......7......9......12......14......17.......19
.1..1...4....8....14....21.....32.....48......61......82.....108......139
.2..5..10...27....53....94....161....259.....399.....578.....811.....1120
.1..7..26...78...180...398....770...1387....2330....3738....5772.....8599
.2.10..61..219...656..1613...3539...7099...13225...23247...38938....62599
.1.20.147..649..2195..6301..15601..34847...71509..137520..249799...433038
.3.37.339.1805..7250.23611..65909.163588..369777..775045.1525468..2847243
.3.77.771.4987.23044.85595.268008.737538.1830390.4178324.8894137.17852441
Some solutions for n=5
..4....1....3....0....4....4....0....3....1....3....0....0....0....2....1....0
..3....2....1....0....3....3....0....1....2....1....4....4....0....4....2....4
..3....0....2....1....2....4....4....3....1....4....2....1....0....1....3....4
..2....1....0....1....1....3....4....1....2....2....1....0....0....3....4....3
..1....3....3....3....2....0....0....2....2....1....2....3....4....1....0....0
		

Crossrefs

Column 1 is A030273. A183946 (column 2), A183947 (column 3), A183954 (row 3), A183955 (row 4).

Programs

  • Maple
    A183953rec := proc(n,k,s)
        option remember;
        local c;
        if s < 0 then
            return 0 ;
        elif n = 0 then
            if s =0 then
                return 1;
            else
                return 0 ;
            end if;
        else
            add( procname(n-1,k,s-c*n^2),c=0..k) ;
        end if;
    end proc:
    A183953 := proc(n,k)
        A183953rec(n,k,k*n^2) ;
    end proc:
    seq(seq( A183953(n,d-n),n=1..d-1),d=2..12) ; # R. J. Mathar, Mar 08 2021
  • Mathematica
    r[n_, k_, s_] := r[n, k, s] = Which[s < 0, 0, n == 0, If[s == 0, 1, 0], True, Sum[r[n-1, k, s-c*n^2], {c, 0, k}]];
    T[n_, k_] := r[n, k, k*n^2];
    Table[Table[T[n, d-n], {n, 1, d-1}], {d, 2, 14}] // Flatten (* Jean-François Alcover, Jul 22 2022, after R. J. Mathar *)