cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183955 Number of strings of numbers x(i=1..4) in 0..n with sum i^2*x(i) equal to n*16.

Original entry on oeis.org

1, 1, 4, 8, 14, 21, 32, 48, 61, 82, 108, 139, 172, 210, 256, 311, 365, 427, 500, 582, 666, 759, 864, 982, 1097, 1228, 1372, 1529, 1688, 1860, 2048, 2253, 2457, 2677, 2916, 3172, 3430, 3705, 4000, 4316, 4629, 4966, 5324, 5703, 6084, 6486, 6912, 7363, 7813, 8287
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Row 4 of A183953.

Examples

			All solutions for n=3:
..2....3....0....1
..3....1....0....1
..2....1....0....3
..1....2....3....1
		

Crossrefs

Cf. A183953.

Programs

  • Mathematica
    r[n_, k_, s_] := r[n, k, s] = Which[s < 0, 0, n == 0, If[s == 0, 1, 0], True, Sum[r[n - 1, k, s - c*n^2], {c, 0, k}]];
    T[n_, k_] := r[n, k, k*n^2];
    a[n_] := T[4, n];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 22 2022, after R. J. Mathar in A183953 *)

Formula

Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) + a(n-16) - 2*a(n-17) + a(n-18) - a(n-20) + 2*a(n-21)-a(n-22).
Empirical g.f.: x*(1 - x + 3*x^2 + x^3 + x^4 + 2*x^5 + x^6 + 4*x^7 - 5*x^8 + 7*x^9 + x^10 + 5*x^12 - 3*x^13 + 3*x^14 + 4*x^15 - 4*x^16 + 4*x^17 - x^19 + 2*x^20 - x^21) / ((1 - x)^4*(1 + x)^2*(1 + x^2)^2*(1 + x^4)*(1 + x^8)). - Colin Barker, Apr 07 2018