A183957 Number of strings of numbers x(i=1..6) in 0..n with sum i^2*x(i) equal to n*36.
1, 7, 26, 78, 180, 398, 770, 1387, 2330, 3738, 5772, 8599, 12396, 17488, 24122, 32632, 43334, 56754, 73278, 93477, 117791, 147036, 181786, 222869, 270904, 327053, 392108, 467146, 553100, 651442, 763249, 889952, 1032752, 1193547, 1373708
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1....0....1....0....0....0....0....0....3....3....3....2....2....2....3....0 ..0....1....2....1....0....1....2....2....3....3....3....0....1....1....2....2 ..0....3....3....2....0....0....1....2....3....2....0....1....2....0....0....3 ..2....1....0....0....0....2....1....2....1....0....2....0....3....1....0....3 ..3....1....0....2....0....0....3....2....2....3....1....1....0....2....1....1 ..0....1....2....1....3....2....0....0....0....0....1....2....1....1....2....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=a(n-1)+a(n-4)-a(n-5)+a(n-9)-a(n-10)-a(n-13)+a(n-14)+a(n-16)-a(n-17)-a(n-20)+a(n-21)-a(n-34)+a(n-35)+a(n-36)-a(n-37)+a(n-38)-a(n-39)-a(n-40)+a(n-42)+a(n-49)-a(n-51)-a(n-52)+a(n-53)-a(n-54)+a(n-55)+a(n-56)-a(n-57)+a(n-70)-a(n-71)-a(n-74)+a(n-75)+a(n-77)-a(n-78)-a(n-81)+a(n-82)-a(n-86)+a(n-87)+a(n-90)-a(n-91)
Comments