A183978 1/4 the number of (n+1) X 2 binary arrays with all 2 X 2 subblock sums the same.
4, 6, 9, 15, 25, 45, 81, 153, 289, 561, 1089, 2145, 4225, 8385, 16641, 33153, 66049, 131841, 263169, 525825, 1050625, 2100225, 4198401, 8394753, 16785409, 33566721, 67125249, 134242305, 268468225, 536920065, 1073807361, 2147581953, 4295098369
Offset: 1
Examples
Some solutions for 5X2 ..0..1....1..0....1..0....1..1....0..1....1..0....1..0....0..1....0..1....0..1 ..0..0....1..0....1..0....1..0....1..0....1..0....1..0....0..1....1..0....0..1 ..1..0....1..0....0..1....1..1....0..1....0..1....0..1....1..0....0..1....1..0 ..0..0....1..0....1..0....0..1....1..0....1..0....0..1....1..0....0..1....0..1 ..1..0....1..0....1..0....1..1....1..0....0..1....0..1....1..0....1..0....0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..46
- Robert Israel, Proof of empirical formulas for A183978
- Index entries for linear recurrences with constant coefficients, signature (3, 0, -6, 4).
Programs
-
Maple
seq((1+2^floor((n-1)/2))*(1+2^ceil((n-1)/2)), n=1..20); # Robert Israel, May 21 2019
Formula
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4)
Based on the conjectured recursion formula, we may prove (by a tedious induction) that a(n) = (2^ceiling(n/2) + 1) * (2^floor(n/2) + 1) = A051032(n) * A051032(n-1) for n >= 1. - Philippe Gibone, Jul 06 2016, corrected by Robert Israel, May 21 2019
Empirical: G.f.: -x*(4-6*x-9*x^2+12*x^3) / ( (x-1)*(2*x-1)*(2*x^2-1) ). - R. J. Mathar, Jul 15 2016
Empirical formulas verified (see link): Robert Israel, May 21 2019.
2*a(n) = 2+2^n+A029744(n+3). - R. J. Mathar, Jul 19 2024
Comments