cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183983 1/4 the number of (n+1) X 7 binary arrays with all 2 X 2 subblock sums the same.

Original entry on oeis.org

45, 47, 50, 56, 66, 86, 122, 194, 330, 602, 1130, 2186, 4266, 8426, 16682, 33194, 66090, 131882, 263210, 525866, 1050666, 2100266, 4198442, 8394794, 16785450, 33566762, 67125290, 134242346, 268468266, 536920106, 1073807402, 2147581994, 4295098410
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 6 of A183986.

Examples

			Some solutions for 5 X 7.
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..1..0..1..0..1..0....0..0..0..0..0..0..0....0..1..0..1..0..1..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..1..0..1..0..1..0....0..0..0..0..0..0..0....0..1..0..1..0..1..0
..0..0..1..0..1..0..1....1..0..1..0..1..0..1....0..1..0..1..0..1..0
		

Crossrefs

Cf. A183986.

Formula

Conjectures from Colin Barker, Apr 09 2018: (Start)
G.f.: x*(45 - 88*x - 91*x^2 + 176*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2-1) + 2^(n-1) + 42 for n even.
a(n) = 2^(n-1) + 2^((n+1)/2) + 42 for n odd.
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>4.
(End)
The above empirical formula is correct. See note from Andrew Howroyd in A183986.