cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184031 1/16 the number of (n+1) X 2 0..3 arrays with all 2 X 2 subblocks having the same four values.

Original entry on oeis.org

16, 28, 49, 91, 169, 325, 625, 1225, 2401, 4753, 9409, 18721, 37249, 74305, 148225, 296065, 591361, 1181953, 2362369, 4723201, 9443329, 18883585, 37761025, 75515905, 151019521, 302026753, 604028929, 1208033281, 2416017409, 4831985665
Offset: 1

Views

Author

R. H. Hardin, Jan 08 2011

Keywords

Comments

Column 1 of A184039.

Examples

			Some solutions for 3 X 2:
..1..2....2..1....2..0....0..1....1..2....0..2....2..2....1..0....1..0....1..3
..1..0....3..3....1..0....0..2....2..2....3..2....1..1....1..3....0..0....3..2
..2..1....2..1....0..2....0..1....1..2....0..2....2..2....1..0....0..1....1..3
		

Crossrefs

Cf. A184039.

Formula

Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 10 2018: (Start)
G.f.: x*(16 - 20*x - 35*x^2 + 40*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 9*2^(n/2-1) + 9*2^(n-1) + 1 for n even.
a(n) = 9*2^(n-1) + 3*2^((n+1)/2) + 1 for n odd.
(End)