A184046 1/9 the number of (n+1) X 8 0..2 arrays with all 2 X 2 subblocks having the same four values.
289, 295, 305, 325, 361, 433, 569, 841, 1369, 2425, 4505, 8665, 16921, 33433, 66329, 132121, 263449, 526105, 1050905, 2100505, 4198681, 8395033, 16785689, 33567001, 67125529, 134242585, 268468505, 536920345, 1073807641, 2147582233, 4295098649
Offset: 1
Keywords
Examples
Some solutions for 5 X 8: ..1..1..1..0..0..0..1..1....0..2..0..2..2..2..0..2....1..0..1..0..1..0..1..0 ..0..0..0..1..1..1..0..0....2..1..2..1..0..1..2..1....2..1..2..1..2..1..2..1 ..1..1..1..0..0..0..1..1....0..2..0..2..2..2..0..2....1..0..1..0..1..0..1..0 ..0..0..0..1..1..1..0..0....2..1..2..1..0..1..2..1....1..2..1..2..1..2..1..2 ..1..1..1..0..0..0..1..1....0..2..0..2..2..2..0..2....0..1..0..1..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184048.
Formula
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 10 2018: (Start)
G.f.: x*(289 - 572*x - 580*x^2 + 1144*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2) + 2^(n+1) + 281 for n even.
a(n) = 2^(n+1) + 2^((n+3)/2) + 281 for n odd.
(End)
Comments