A184047 1/9 the number of (n+1) X 9 0..2 arrays with all 2 X 2 subblocks having the same four values.
561, 567, 577, 597, 633, 705, 841, 1113, 1641, 2697, 4777, 8937, 17193, 33705, 66601, 132393, 263721, 526377, 1051177, 2100777, 4198953, 8395305, 16785961, 33567273, 67125801, 134242857, 268468777, 536920617, 1073807913, 2147582505, 4295098921
Offset: 1
Keywords
Examples
Some solutions for 5 X 9: ..2..0..2..0..0..1..0..1..2....1..1..0..0..0..0..1..0..1 ..0..1..0..1..2..0..2..0..0....0..0..1..1..1..1..0..1..0 ..2..0..2..0..0..1..0..1..2....1..1..0..0..0..0..1..0..1 ..0..1..0..1..2..0..2..0..0....0..0..1..1..1..1..0..1..0 ..2..0..2..0..0..1..0..1..2....1..1..0..0..0..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..158
Crossrefs
Cf. A184048.
Formula
Empirical: a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4).
Conjectures from Colin Barker, Apr 10 2018: (Start)
G.f.: x*(561 - 1116*x - 1124*x^2 + 2232*x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2) + 2^(n+1) + 553 for n even.
a(n) = 2^(n+1) + 2^((n+3)/2) + 553 for n odd.
(End)
Comments