A184049 T(n,k) is the number of order-preserving and order-decreasing partial isometries (of an n-chain) of height k (height of alpha = |Im(alpha)|).
1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 10, 10, 5, 1, 1, 15, 20, 15, 6, 1, 1, 21, 35, 35, 21, 7, 1, 1, 28, 56, 70, 56, 28, 8, 1, 1, 36, 84, 126, 126, 84, 36, 9, 1, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 66, 220
Offset: 0
Examples
T (4,2) = 10 because there are exactly 10 order-preserving and order-decreasing partial isometries (on a 4-chain) of height 2, namely: (1,2)-->(1,2); (2,3)-->(1,2); (2,3)-->(2,3); (3,4)-->(1,2); (3,4)-->(2,3); (3,4)-->(3,4); (1,3)-->(1,3); (2,4)-->(1,3); (2,4)-->(2,4); (1,4)-->(1,4) - the mappings are coordinate-wise 1, 1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 10, 10, 5, 1, 1, 15, 20, 15, 6, 1, 1, 21, 35, 35, 21, 7, 1, 1, 28, 56, 70
Links
- R. Kehinde, S. O. Makanjuola and A. Umar, On the semigroup of order-decreasing partial isometries of a finite chain, arXiv:1101.2558 [math.GR], 2011.
Programs
-
Mathematica
z = 14; p[n_, x_] := (x + 1) p[n - 1, x] + (n - 1)*x; p[0, x_] = 1; t = Table[Factor[p[n, x]], {n, 0, z}] TableForm[Rest[Table[CoefficientList[t[[n]], x], {n, 0, z}]]] (* A184049 array *) Flatten[CoefficientList[t, x]] (* A184049 sequence *) (* Clark Kimberling, Dec 02 2014 *)
Formula
T(n;0)=1 and T(n,k)=C(n+1,k+1), (k>0)
Extensions
More terms from Clark Kimberling, Dec 02 2014
Comments