cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184085 Decimal expansion of product_{p=primes} (1-1/(2^p-1)).

Original entry on oeis.org

5, 4, 8, 3, 0, 0, 8, 3, 1, 2, 8, 2, 0, 9, 8, 4, 0, 7, 6, 7, 7, 6, 4, 0, 4, 9, 1, 5, 2, 2, 6, 7, 3, 1, 5, 4, 4, 9, 7, 0, 1, 9, 9, 4, 6, 1, 0, 0, 1, 8, 5, 0, 9, 9, 4, 5, 1, 3, 7, 3, 8, 5, 9, 2, 8, 5, 7, 9, 7, 7, 4, 2, 6, 6, 3, 7, 4, 1, 6, 2, 1, 7, 2, 4, 5, 4, 9, 6, 4, 3, 0, 1, 2, 2, 2, 6, 9, 3, 1, 9, 6, 3, 2
Offset: 0

Views

Author

R. J. Mathar, Jan 09 2011

Keywords

Examples

			(1-1/3) *(1-1/7) *(1-1/31) *(1-1/127) *(1-1/2047) * ... = 0.5483008312820984076776404...
		

Programs

  • Mathematica
    digits = 103; m0 = 10; dm = 10; f[m_] := f[m] = Product[p = Prime[n]; 1 - 1/(2^p - 1), {n, 1, m}]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits+2] != RealDigits[f[m - dm], 10, digits+2], m = m + dm]; RealDigits[f[m], 10, digits] // First (* Jean-François Alcover, Oct 14 2014 *)

Formula

Equals product_{p in A000040} (1-1/(2^p-1)) = product_{n>=1} (1-1/A001348(n)).

Extensions

More digits from Jean-François Alcover, Oct 14 2014