A184138 Number of n X 3 binary arrays with rows and columns in nondecreasing order.
4, 14, 45, 130, 336, 785, 1682, 3351, 6280, 11176, 19031, 31200, 49492, 76275, 114596, 168317, 242268, 342418, 476065, 652046, 880968, 1175461, 1550454, 2023475, 2614976, 3348684, 4251979, 5356300, 6697580, 8316711, 10260040, 12579897
Offset: 1
Keywords
Examples
Some solutions for 5 X 3: ..0..0..0....0..0..0....0..0..0....0..0..1....0..1..1....0..0..0....0..0..0 ..0..0..1....0..0..1....0..0..0....0..1..0....0..1..1....0..1..1....0..0..1 ..1..1..0....1..1..1....0..0..0....0..1..0....1..0..1....0..1..1....0..1..1 ..1..1..0....1..1..1....0..0..1....0..1..1....1..0..1....0..1..1....1..1..0 ..1..1..0....1..1..1....1..1..1....1..0..1....1..1..1....0..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A180985.
Formula
Empirical: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) (=polynomial degree 7).
Conjectures from Colin Barker, Apr 12 2018: (Start)
G.f.: x*(4 - 18*x + 45*x^2 - 62*x^3 + 52*x^4 - 27*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = (5040 + 7860*n + 4494*n^2 + 2044*n^3 + 525*n^4 + 175*n^5 + 21*n^6 + n^7) / 5040.
(End)
Comments