A184155 The Matula-Goebel number of rooted trees having all leaves at the same level.
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 49, 53, 57, 59, 63, 64, 67, 73, 81, 83, 85, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 159, 171, 189, 227, 241, 243, 256, 269, 277, 289, 307, 311, 331, 335, 343, 361, 365, 367, 371, 391, 393, 399, 419, 425, 431, 439, 441, 477
Offset: 1
Keywords
Examples
7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having all leaves at level 2. 2^m is in the sequence for each positive integer m because the rooted tree with Matula-Goebel number 2^m is a star with m edges. From _Gus Wiseman_, Mar 30 2018: (Start) Sequence of trees begins: 01 o 02 (o) 03 ((o)) 04 (oo) 05 (((o))) 07 ((oo)) 08 (ooo) 09 ((o)(o)) 11 ((((o)))) 16 (oooo) 17 (((oo))) 19 ((ooo)) 21 ((o)(oo)) 23 (((o)(o))) 25 (((o))((o))) 27 ((o)(o)(o)) 31 (((((o))))) (End)
References
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
Crossrefs
Programs
-
Maple
with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: A := {}: for n to 500 do if degree(numer(subs(x = 1/x, P(n)))) = 0 then A := `union`(A, {n}) else end if end do: A;
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; dep[n_]:=If[n===1,0,1+Max@@dep/@primeMS[n]]; rnkQ[n_]:=And[SameQ@@dep/@primeMS[n],And@@rnkQ/@primeMS[n]]; Select[Range[2000],rnkQ] (* Gus Wiseman, Mar 30 2018 *)
Formula
In A184154 one constructs for each n the generating polynomial P(n,x) of the leaves of the rooted tree with Matula-Goebel number n, according to their levels. The Maple program finds those n (between 1 and 500) for which P(n,x) is a monomial.
Comments