cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184157 The sum of the even distances in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 2, 2, 4, 4, 6, 6, 10, 10, 10, 8, 8, 8, 16, 12, 8, 14, 12, 18, 18, 16, 14, 14, 28, 14, 24, 12, 18, 24, 16, 20, 28, 18, 24, 20, 14, 14, 24, 28, 14, 22, 12, 24, 34, 24, 24, 22, 30, 40, 24, 22, 20, 30, 40, 18, 28, 24, 18, 34, 20, 28, 36, 30, 36, 36, 14, 30, 34, 32, 28, 28, 22, 20, 50, 18, 42, 32, 24, 40
Offset: 1

Views

Author

Emeric Deutsch, Oct 15 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n) + A184158(n) = A196051(n) (= the Wiener index of the rooted tree with Matula-Goebel number n).

Examples

			a(7)=6 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with 3 distances equal to 2.
		

References

  • O. Ivanciuc, T. Ivanciuc, D. J. Klein, W. A. Seitz, and A. T. Balaban, Wiener index extension by counting even/odd graph distances, J. Chem. Inf. Comput. Sci., 41, 2001, 536-549.

Crossrefs

Programs

  • Maple
    with(numtheory): WP := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(WP(pi(n))+x*R(pi(n))+x)) else sort(expand(WP(r(n))+WP(s(n))+R(r(n))*R(s(n)))) end if end proc: a := proc (n) options operator, arrow: (1/2)*subs(x = 1, diff(WP(n), x))-(1/2)*subs(x = -1, diff(WP(n), x)) end proc: seq(a(n), n = 1 .. 80);
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    R[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*R[PrimePi[n]] + x, True,  R[r[n]] + R[s[n]]];
    WP[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, WP[PrimePi[n]] + x*R[PrimePi[n]] + x, True, WP[r[n]] + WP[s[n]] + R[r[n]]*R[s[n]]];
    a[n_] := (1/2)(D[WP[n], x] /. x -> 1) - (1/2)(D[WP[n], x] /. x -> -1);
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 21 2024, after Maple code *)

Formula

a(n) is the value at x=1 of the derivative of the even part of the Wiener polynomial W(n)=W(n,x) of the rooted tree with Matula number n. W(n) is obtained recursively in A196059. The Maple program is based on the above.