A184158 The sum of the odd distances in the rooted tree with Matula-Goebel number n.
0, 1, 2, 2, 6, 6, 3, 3, 10, 10, 10, 10, 10, 10, 19, 4, 10, 17, 4, 14, 14, 19, 17, 14, 28, 17, 24, 17, 14, 26, 19, 5, 28, 14, 28, 24, 14, 14, 26, 18, 17, 24, 17, 28, 38, 24, 26, 18, 18, 35, 28, 24, 5, 34, 44, 24, 18, 26, 14, 33, 24, 28, 31, 6, 40, 40, 14, 18, 38, 38, 18, 31, 24, 24, 52, 24, 37, 36, 28, 22
Offset: 1
Keywords
Examples
a(7)=3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with 3 distances equal to 1.
References
- O. Ivanciuc, T. Ivanciuc, D. J. Klein, W. A. Seitz, and A. T. Balaban, Wiener index extension by counting even/odd graph distances, J. Chem. Inf. Comput. Sci., 41, 2001, 536-549.
Links
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): WP := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(WP(pi(n))+x*R(pi(n))+x)) else sort(expand(WP(r(n))+WP(s(n))+R(r(n))*R(s(n)))) end if end proc: a := proc (n) options operator, arrow: (1/2)*subs(x = 1, diff(WP(n), x))+(1/2)*subs(x = -1, diff(WP(n), x)) end proc: seq(a(n), n = 1 .. 80);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; R[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*R[PrimePi[n]] + x, True, R[r[n]] + R[s[n]]]; WP[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, WP[PrimePi[n]] + x*R[PrimePi[n]] + x, True, WP[r[n]] + WP[s[n]] + R[r[n]]*R[s[n]]]; a[n_] := (1/2)(D[WP[n], x] /. x -> 1) + (1/2)(D[WP[n], x] /. x -> -1); Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 21 2024, after Maple code *)
Formula
a(n) is the value at x=1 of the derivative of the odd part of the Wiener polynomial W(n)=W(n,x) of the rooted tree with Matula number n. W(n) is obtained recursively in A196059. The Maple program is based on the above.
Comments