This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184173 #36 Feb 29 2024 06:56:50 %S A184173 1,1,1,1,3,1,1,7,7,1,1,15,34,15,1,1,31,144,144,31,1,1,63,574,1155,574, %T A184173 63,1,1,127,2226,8526,8526,2226,127,1,1,255,8533,60588,113832,60588, %U A184173 8533,255,1,1,511,32587,424117,1444608,1444608,424117,32587,511,1 %N A184173 Triangle read by rows: T(n,k) is the sum of the k X k minors in the n X n Pascal matrix (0<=k<=n; the empty 0 X 0 minor is defined to be 1). %C A184173 Apparently, the sum of the entries in row n is A005157(n). %H A184173 Alois P. Heinz, <a href="/A184173/b184173.txt">Rows n = 0..12, flattened</a> %H A184173 Wikipedia, <a href="https://en.wikipedia.org/wiki/Minor_(linear_algebra)">Minor (linear algebra)</a> %F A184173 The triangle is symmetric: T(n,k) = T(n,n-k). %e A184173 T(3,1) = 7 because in the 3 X 3 Pascal matrix [1,0,0/1,1,0/1,2,1] the sum of the entries is 7. %e A184173 Triangle starts: %e A184173 1; %e A184173 1, 1; %e A184173 1, 3, 1; %e A184173 1, 7, 7, 1; %e A184173 1, 15, 34, 15, 1; %e A184173 1, 31, 144, 144, 31, 1; %e A184173 1, 63, 574, 1155, 574, 63, 1; %e A184173 1, 127, 2226, 8526, 8526, 2226, 127, 1; %e A184173 ... %p A184173 with(combinat): with(LinearAlgebra): %p A184173 T:= proc(n, k) option remember; `if`(n-k<k, T(n, n-k), (l-> add(add( %p A184173 Determinant(SubMatrix(Matrix(n, (i, j)-> binomial(i-1, j-1)), %p A184173 i, j)), j in l), i in l))(choose([$1..n], k))) %p A184173 end: %p A184173 seq(seq(T(n, k), k=0..n), n=0..7); # _Alois P. Heinz_, Feb 11 2019 %t A184173 T[n_, k_] := T[n, k] = If[k == 0 || k == n, 1, Module[{l, M}, %t A184173 l = Subsets[Range[n], {k}]; %t A184173 M = Table[Binomial[i-1, j-1], {i, n}, {j, n}]; %t A184173 Total[Det /@ Flatten[Table[M[[i, j]], {i, l}, {j, l}], 1]]]]; %t A184173 Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 09 2019 updated Feb 29 2024 *) %Y A184173 Columns k=0-2 give: A000012, A000225, A306376. %Y A184173 Cf. A005157, A007318. %K A184173 nonn,tabl %O A184173 0,5 %A A184173 _Emeric Deutsch_, Jan 12 2011 %E A184173 Typo corrected by _Alois P. Heinz_, Feb 11 2019