This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184357 #11 Jul 30 2023 17:12:46 %S A184357 1,2,15,226,5079,151326,5611906,248995090,12862665297,758353907422, %T A184357 50255751919386,3698524145800452,299324750430958973, %U A184357 26424096787968560864,2527130527406877225450,260305991718814269022586,28732428200125730917353569 %N A184357 a(n) = Sum_{k=0..n} C(n^2-k^2, n-k)*C(k^2, k). %H A184357 Harvey P. Dale, <a href="/A184357/b184357.txt">Table of n, a(n) for n = 0..337</a> %e A184357 a(0) = 1 = 1*1; %e A184357 a(1) = 2 = 1*1 + 1*1; %e A184357 a(2) = 15 = 6*1 + 3*1 + 1*6; %e A184357 a(3) = 226 = 84*1 + 28*1 + 5*6 + 1*84; %e A184357 a(4) = 5079 = 1820*1 + 455*1 + 66*6 + 7*84 + 1*1820; %e A184357 a(5) = 151326 = 53130*1 + 10626*1 + 1330*6 + 120*84 + 9*1820 + 1*53130; ... %t A184357 Table[Sum[Binomial[n^2-k^2,n-k]Binomial[k^2,k],{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Jul 30 2023 *) %o A184357 (PARI) {a(n)=if(n<0, 0, sum(k=0, n, binomial(n^2-k^2, n-k)*binomial(k^2, k)))} %Y A184357 Cf. A060539, A014062. %K A184357 nonn %O A184357 0,2 %A A184357 _Paul D. Hanna_, Jan 15 2011