cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184361 Self-convolution equals A184360.

This page as a plain text file.
%I A184361 #10 Apr 08 2025 10:39:25
%S A184361 1,1,2,15,204,4085,110128,3809974,164121912,8615474691,541908913830,
%T A184361 40272139958565,3493551786163290,350048185790908410,
%U A184361 40136947555438179728,5223165612267081234916,765782709626083599128656
%N A184361 Self-convolution equals A184360.
%F A184361 G.f. satisfies: A(x) = G(x/A(x)^2) and A(x*G(x)^2) = G(x) is the g.f. of A184359.
%F A184361 G.f.: A(x) = sqrt(x/Series_Reversion(x*F(x))) where F(x) = Sum_{n>=0} (n+1)!^2*(x/2)^n is the g.f. of A184358.
%F A184361 G.f. satisfies: [x^n] A(x)^(2n+2)/(n+1) = (n+1)!^2/2^n = A184358(n).
%e A184361 G.f.: A(x) = 1 + x + 2*x^2 + 15*x^3 + 204*x^4 + 4085*x^5 +...
%e A184361 A(x)^2 = 1 + 2*x + 5*x^2 + 34*x^3 + 442*x^4 + 8638*x^5 + 229467*x^6 +...+ A184360(n)*x^n +...
%o A184361 (PARI) {a(n)=local(G=sum(m=0,n,(m+1)!^2*x^m/2^m)+x*O(x^n));polcoeff(sqrt(x/serreverse(x*G)),n)}
%Y A184361 Cf. A184358, A184359, A184360.
%K A184361 nonn
%O A184361 0,3
%A A184361 _Paul D. Hanna_, Jan 16 2011