This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184424 #17 Jun 09 2019 03:04:42 %S A184424 1,6,252,15288,1089270,84963060,7023612960,604604070720, %T A184424 53620823521980,4865593245513000,449580815885401200, %U A184424 42156561463105471200,4001360292206427641400,383704407665664889683600 %N A184424 a(n) = (3^n/n!^2) * Product_{k=1..n} (6k-4)*(6k-5). %H A184424 G. C. Greubel, <a href="/A184424/b184424.txt">Table of n, a(n) for n = 0..492</a> %F A184424 Self-convolution equals A184423, where A184423(n) = (2n)!*(3n)!/n!^5: %F A184424 Sum_{k=0..n} a(n-k)*a(k) = (2n)!*(3n)!/n!^5. %F A184424 a(n) ~ 2^(2*n + 1/3) * 3^(3*n - 1/2) * sqrt(Pi) / (Gamma(1/3)^3 * n^(3/2)). - _Vaclav Kotesovec_, Jun 09 2019 %e A184424 G.f.: A(x) = 1 + 6*x + 252*x^2 + 15288*x^3 + 1089270*x^4 +... %e A184424 G.f. of A184423 equals A(x)^2: %e A184424 A(x)^2 = 1 + 12*x + 540*x^2 + 33600*x^3 + 2425500*x^4 + 190702512*x^5 +...+ [(2n)!*(3n)!/n!^5]*x^n +... %t A184424 a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/6, 1/3, 1, 108 x], {x, 0, n}]; (* _Michael Somos_, Sep 26 2011 *) %t A184424 Table[3^n/(n!)^2 Product[(6k-4)(6k-5),{k,n}],{n,0,20}] (* _Harvey P. Dale_, May 10 2019 *) %o A184424 (PARI) {a(n)=3^n*prod(k=1,n,(6*k-4)*(6*k-5))/n!^2} %o A184424 (PARI) {a(n)=polcoeff(sum(m=0,n,(2*m)!*(3*m)!/m!^5*x^m+x*O(x^n))^(1/2),n)} %Y A184424 Cf. A184423. %K A184424 nonn %O A184424 0,2 %A A184424 _Paul D. Hanna_, Jan 13 2011