cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184469 1/6 the number of (n+2) X 3 0..2 arrays with each 3 X 3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

315, 1095, 3705, 12339, 45585, 161739, 559305, 2147931, 7836561, 27667251, 108488889, 401513355, 1432182465, 5674143555, 21145265865, 75792359259, 301775575185, 1128283339059, 4053433203225, 16177609637451, 60579025906401
Offset: 1

Views

Author

R. H. Hardin, Jan 15 2011

Keywords

Comments

Column 1 of A184477.

Examples

			Some solutions with a(1,1)=0 for 4 X 3:
..0..2..2....0..1..2....0..2..0....0..0..2....0..1..2....0..1..2....0..2..1
..2..0..1....1..2..1....0..2..0....2..0..2....1..2..1....0..2..0....1..1..2
..0..2..0....2..1..2....2..1..2....2..1..0....2..1..2....2..2..0....1..2..2
..0..2..2....2..0..1....0..2..0....0..0..2....1..0..2....0..1..2....2..0..1
		

Crossrefs

Cf. A184477.

Formula

Empirical: a(n) = 3*a(n-1) + 96*a(n-3) - 288*a(n-4) - 2700*a(n-6) + 8100*a(n-7) + 23328*a(n-9) - 69984*a(n-10).
Empirical g.f.: 3*x*(105 + 50*x + 140*x^2 - 9672*x^3 - 1944*x^4 - 5112*x^5 + 269028*x^6 + 17496*x^7 + 42768*x^8 - 2332800*x^9) / ((1 - 3*x)*(1 - 18*x^3)*(1 - 24*x^3)*(1 - 54*x^3)). - Colin Barker, Apr 12 2018