A184469 1/6 the number of (n+2) X 3 0..2 arrays with each 3 X 3 subblock containing one of one value, four of another, and four of the last.
315, 1095, 3705, 12339, 45585, 161739, 559305, 2147931, 7836561, 27667251, 108488889, 401513355, 1432182465, 5674143555, 21145265865, 75792359259, 301775575185, 1128283339059, 4053433203225, 16177609637451, 60579025906401
Offset: 1
Keywords
Examples
Some solutions with a(1,1)=0 for 4 X 3: ..0..2..2....0..1..2....0..2..0....0..0..2....0..1..2....0..1..2....0..2..1 ..2..0..1....1..2..1....0..2..0....2..0..2....1..2..1....0..2..0....1..1..2 ..0..2..0....2..1..2....2..1..2....2..1..0....2..1..2....2..2..0....1..2..2 ..0..2..2....2..0..1....0..2..0....0..0..2....1..0..2....0..1..2....2..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184477.
Formula
Empirical: a(n) = 3*a(n-1) + 96*a(n-3) - 288*a(n-4) - 2700*a(n-6) + 8100*a(n-7) + 23328*a(n-9) - 69984*a(n-10).
Empirical g.f.: 3*x*(105 + 50*x + 140*x^2 - 9672*x^3 - 1944*x^4 - 5112*x^5 + 269028*x^6 + 17496*x^7 + 42768*x^8 - 2332800*x^9) / ((1 - 3*x)*(1 - 18*x^3)*(1 - 24*x^3)*(1 - 54*x^3)). - Colin Barker, Apr 12 2018
Comments