cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A184468 1/6 the number of (n+2)X(n+2) 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

315, 2755, 14119, 53739, 247879, 904411, 2909367
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Diagonal of A184477

Examples

			Some solutions with a(1,1)=0 for 4X4
..0..2..1..0....0..2..1..0....0..1..2..0....0..0..1..1....0..2..1..0
..0..0..0..0....1..1..2..2....0..0..1..1....1..0..0..0....1..1..2..1
..1..1..1..1....2..2..1..1....1..0..1..0....1..2..1..1....1..2..2..1
..0..1..2..0....1..0..2..1....2..0..1..2....0..0..1..1....1..2..0..1
		

A184469 1/6 the number of (n+2) X 3 0..2 arrays with each 3 X 3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

315, 1095, 3705, 12339, 45585, 161739, 559305, 2147931, 7836561, 27667251, 108488889, 401513355, 1432182465, 5674143555, 21145265865, 75792359259, 301775575185, 1128283339059, 4053433203225, 16177609637451, 60579025906401
Offset: 1

Views

Author

R. H. Hardin, Jan 15 2011

Keywords

Comments

Column 1 of A184477.

Examples

			Some solutions with a(1,1)=0 for 4 X 3:
..0..2..2....0..1..2....0..2..0....0..0..2....0..1..2....0..1..2....0..2..1
..2..0..1....1..2..1....0..2..0....2..0..2....1..2..1....0..2..0....1..1..2
..0..2..0....2..1..2....2..1..2....2..1..0....2..1..2....2..2..0....1..2..2
..0..2..2....2..0..1....0..2..0....0..0..2....1..0..2....0..1..2....2..0..1
		

Crossrefs

Cf. A184477.

Formula

Empirical: a(n) = 3*a(n-1) + 96*a(n-3) - 288*a(n-4) - 2700*a(n-6) + 8100*a(n-7) + 23328*a(n-9) - 69984*a(n-10).
Empirical g.f.: 3*x*(105 + 50*x + 140*x^2 - 9672*x^3 - 1944*x^4 - 5112*x^5 + 269028*x^6 + 17496*x^7 + 42768*x^8 - 2332800*x^9) / ((1 - 3*x)*(1 - 18*x^3)*(1 - 24*x^3)*(1 - 54*x^3)). - Colin Barker, Apr 12 2018

A184470 1/6 the number of (n+2)X4 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

1095, 2755, 7085, 19119, 62213, 200215, 645837, 2386807, 8440325, 29121087, 112850957, 413112487, 1461095205, 5765335615, 21394180445, 76423033479, 303819408773, 1133934761455, 4067862256797, 16225029630247, 60710982378005
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 2 of A184477

Examples

			Some solutions with a(1,1)=0 for 6X4
..0..0..0..2....0..1..1..0....0..1..1..0....0..1..0..1....0..0..2..0
..2..2..0..0....1..1..0..0....0..1..2..0....1..0..0..1....2..0..2..1
..2..2..1..2....0..2..0..1....0..1..0..0....1..2..1..0....1..2..0..2
..0..0..0..2....1..0..1..1....0..1..1..0....0..1..0..1....0..0..2..0
..2..2..0..0....1..0..1..0....1..0..2..1....0..1..0..0....2..2..0..1
..2..1..2..2....0..2..0..1....0..1..0..0....1..2..1..0....1..2..0..2
		

Formula

Empirical: a(n)=5*a(n-1)-6*a(n-2)+123*a(n-3)-615*a(n-4)+738*a(n-5)-5552*a(n-6)+27760*a(n-7)-33312*a(n-8)+122328*a(n-9)-611640*a(n-10)+733968*a(n-11)-1443600*a(n-12)+7218000*a(n-13)-8661600*a(n-14)+9366192*a(n-15)-46830960*a(n-16)+56197152*a(n-17)-32980608*a(n-18)+164903040*a(n-19)-197883648*a(n-20)+58413312*a(n-21)-292066560*a(n-22)+350479872*a(n-23)-40310784*a(n-24)+201553920*a(n-25)-241864704*a(n-26)

A184471 1/6 the number of (n+2)X5 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

3705, 7085, 14119, 30681, 86575, 249953, 747735, 2652785, 9085231, 30632409, 117322423, 424882145, 1490248815, 5857018745, 21643873159, 77054809761, 305865631855, 1139590008233, 4082296717095, 16272461979425, 60842958745471
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 3 of A184477

Examples

			Some solutions with a(1,1)=0 for 4X5
..0..1..2..0..1....0..0..0..2..0....0..1..2..0..2....0..1..1..0..1
..0..0..0..0..0....1..1..1..1..0....2..2..2..2..1....0..0..1..1..0
..1..1..1..1..1....2..0..1..0..1....1..1..1..1..1....1..0..2..0..0
..0..1..2..0..1....0..0..0..2..0....0..1..2..0..2....0..1..1..0..1
		

Formula

Empirical: a(n)=6*a(n-1)-11*a(n-2)+129*a(n-3)-738*a(n-4)+1353*a(n-5)-6290*a(n-6)+33312*a(n-7)-61072*a(n-8)+155640*a(n-9)-733968*a(n-10)+1345608*a(n-11)-2177568*a(n-12)+8661600*a(n-13)-15879600*a(n-14)+18027792*a(n-15)-56197152*a(n-16)+103028112*a(n-17)-89177760*a(n-18)+197883648*a(n-19)-362786688*a(n-20)+256296960*a(n-21)-350479872*a(n-22)+642546432*a(n-23)-390790656*a(n-24)+241864704*a(n-25)-443418624*a(n-26)+241864704*a(n-27)

A184472 1/6 the number of (n+2)X6 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

12339, 19119, 30681, 53739, 127689, 322275, 878625, 2967411, 9800745, 32238603, 121975089, 436928547, 1519783929, 5949509979, 21894837441, 77688357939, 307915900809, 1145251722315, 4096740213585, 16319916055011, 60974970119385
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 4 of A184477

Examples

			Some solutions with a(1,1)=0 for 4X6
..0..2..1..1..2..2....0..2..1..0..2..0....0..1..1..0..1..0....0..0..2..0..2..1
..0..2..0..1..2..1....0..0..2..0..0..2....1..2..0..1..0..1....0..2..2..1..0..1
..0..2..2..1..2..0....2..2..0..2..2..1....1..0..0..1..2..0....1..0..2..0..0..1
..0..2..1..1..2..2....0..2..1..0..2..0....1..0..1..1..0..0....0..0..2..0..2..1
		

Formula

Empirical: a(n)=6*a(n-1)-11*a(n-2)+129*a(n-3)-738*a(n-4)+1353*a(n-5)-6290*a(n-6)+33312*a(n-7)-61072*a(n-8)+155640*a(n-9)-733968*a(n-10)+1345608*a(n-11)-2177568*a(n-12)+8661600*a(n-13)-15879600*a(n-14)+18027792*a(n-15)-56197152*a(n-16)+103028112*a(n-17)-89177760*a(n-18)+197883648*a(n-19)-362786688*a(n-20)+256296960*a(n-21)-350479872*a(n-22)+642546432*a(n-23)-390790656*a(n-24)+241864704*a(n-25)-443418624*a(n-26)+241864704*a(n-27)

A184473 1/6 the number of (n+2)X7 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

45585, 62213, 86575, 127689, 247879, 520289, 1219455, 3727073, 11454631, 35847321, 132023695, 462435665, 1581583095, 6139850633, 22407327775, 78976349889, 312058001959, 1156657902329, 4125792115215, 16415153428433
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 5 of A184477

Examples

			Some solutions with a(1,1)=0 for 4X7
..0..2..0..0..1..0..0....0..0..0..0..1..1..1....0..2..1..0..0..1..0
..0..1..0..0..2..1..0....0..1..1..0..0..2..0....0..1..0..1..2..1..1
..1..1..1..1..1..0..1....1..1..2..1..1..0..0....1..0..1..0..1..0..0
..0..2..0..0..1..0..0....0..0..0..0..1..1..1....0..2..1..0..0..1..0
		

A184474 1/6 the number of (n+2)X8 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

161739, 200215, 249953, 322275, 520289, 904411, 1782585, 4808779, 13539521, 40005219
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 6 of A184477

Examples

			Some solutions with a(1,1)=0 for 4X8
..0..0..1..0..1..2..1..1....0..0..2..0..1..2..0..1....0..1..2..0..1..1..0..0
..0..1..2..1..0..1..0..1....0..1..0..1..1..1..0..1....0..0..1..0..1..1..0..1
..1..1..0..0..1..0..0..0....1..1..1..0..0..0..1..0....0..1..1..0..0..2..0..1
..0..0..1..0..1..2..1..1....0..0..2..0..1..2..0..1....0..1..2..0..1..1..0..0
		

A184475 1/6 the number of (n+2)X9 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

559305, 645837, 747735, 878625, 1219455, 1782585, 2909367
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 7 of A184477

Examples

			Some solutions with a(1,1)=0 for 4X9
..0..1..2..2..0..2..2..1..1....0..1..1..2..1..1..0..2..1
..0..1..1..2..0..1..2..1..0....0..1..0..2..1..0..0..1..0
..0..1..0..2..0..0..2..1..2....0..2..1..2..2..1..0..1..1
..0..1..2..2..0..2..2..1..1....0..1..1..2..1..1..0..2..1
		

A184476 1/6 the number of (n+2)X10 0..2 arrays with each 3X3 subblock containing one of one value, four of another, and four of the last.

Original entry on oeis.org

2147931, 2386807, 2652785, 2967411, 3727073, 4808779
Offset: 1

Views

Author

R. H. Hardin Jan 15 2011

Keywords

Comments

Column 8 of A184477

Examples

			Some solutions with a(1,1)=0 for 4X10
..0..0..1..2..0..1..2..0..1..0....0..1..2..2..0..2..2..1..1..2
..0..1..1..2..1..1..2..2..1..0....0..1..1..2..1..1..2..0..1..2
..0..2..1..2..2..1..2..1..1..0....0..0..1..2..1..1..2..1..2..2
..0..0..1..2..0..1..2..0..1..0....0..1..2..2..0..2..2..1..1..2
		
Showing 1-9 of 9 results.