cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184479 Upper s-Wythoff sequence, where s(n)=3n+1. Complement of A184478.

Original entry on oeis.org

5, 9, 13, 17, 22, 26, 30, 35, 39, 43, 48, 52, 56, 61, 65, 69, 73, 78, 82, 86, 91, 95, 99, 104, 108, 112, 116, 121, 125, 129, 134, 138, 142, 147, 151, 155, 159, 164, 168, 172, 177, 181, 185, 190, 194, 198, 202, 207, 211, 215, 220, 224, 228, 233, 237, 241, 246
Offset: 1

Views

Author

Clark Kimberling, Jan 15 2011

Keywords

Crossrefs

Programs

  • Mathematica
    k=3; r=-1; d=Sqrt[4+k^2];
    a[n_]:=Floor[(1/2)(d+2-k)(n+r/(d+2))];
    b[n_]:=Floor[(1/2)(d+2+k)(n-r/(d+2))];
    Table[a[n],{n,120}]
    Table[b[n],{n,120}]
  • PARI
    A184479_upto(N, s(n)=3*n+1, U=[0], b=[])={until(b[#b]>=N, b=concat(b, s(1+#b)+U[1]+=1); U=setunion(U, [b[#b]]); while(#U>1 && U[2]==U[1]+1, U=U[^1])); b} \\ M. F. Hasler, Jan 07 2019

Formula

a(n) = A184478(n) + s(n). - M. F. Hasler, Jan 07 2019
For n up to 1000 at least, a(n) = round(m*n + c) with m ~ 4.302774 and c ~ 0.268517. - M. F. Hasler, Jan 07 2019