cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184532 Array, read by rows: T(n,h)=floor[1/{(h+n^3)^(1/3)}], where h=1,2,...,3n^2+3n and {}=fractional part.

This page as a plain text file.
%I A184532 #14 Feb 11 2025 08:15:40
%S A184532 3,2,1,1,1,1,12,6,4,3,2,2,2,1,1,1,1,1,1,1,1,1,1,1,27,13,9,7,5,4,4,3,3,
%T A184532 3,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,48,24,16,12,9,
%U A184532 8,7,6,5,5,4,4,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,75,37,25,18,15,12,10,9,8,7,7,6,5,5,5,4,4,4,4,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1
%N A184532 Array, read by rows:  T(n,h)=floor[1/{(h+n^3)^(1/3)}], where h=1,2,...,3n^2+3n and {}=fractional part.
%F A184532 T(n,h)=floor[1/{(h+n^3)^(1/3)}], where h=1,2,...,3n^2+3n and {}=fractional part.
%e A184532 First 2 rows:
%e A184532   3, 2, 1, 1, 1, 1
%e A184532   12, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
%t A184532 f[n_,h_]:=FractionalPart[(n^3+h)^(1/3)];
%t A184532 g[n_,h_]:=Floor[1/f[n,h]];
%t A184532 Table[Flatten[Table[g[n,h],{n,1,5},{h,1,3n^2+3n}]]]
%t A184532 TableForm[Table[g[n,h],{n,1,5},{h,1,3n^2+3n}]]
%Y A184532 Cf. A013942 (analogous array for sqrt(h+n^2)), A184533.
%Y A184532 Columns 1 to 6: A033428 (3n^2), A184532=A000290+A007590, A000290 (n^2), A184534, A184535, A080476.
%K A184532 nonn,tabf
%O A184532 1,1
%A A184532 _Clark Kimberling_, Jan 16 2011