This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184538 #14 Sep 21 2012 07:14:17 %S A184538 2,11,36,85,166,288,457,682,972,1333,1774,2304,2929,3658,4500,5461, %T A184538 6550,7776,9145,10666,12348,14197,16222,18432,20833,23434,26244,29269, %U A184538 32518,36000,39721,43690,47916,52405,57166,62208,67537,73162,79092,85333,91894,98784,106009,113578,121500,129781,138430,147456,156865,166666,176868,187477,198502,209952,221833,234154,246924,260149,273838,288000 %N A184538 Floor[1/{(3+n^4)^(1/4)}], where {}=fractional part. %F A184538 a(n)=floor[1/{(3+n^4)^(1/4)}], where {}=fractional part. %F A184538 Recurrence relation appears to be a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6). %F A184538 Empirical G.f.: x*(x+1)*(x^6-3*x^5+3*x^4+6*x^2+3*x+2)/((x-1)^4*(x^2+x+1)). [_Colin Barker_, Sep 21 2012] %t A184538 p[n_]:=FractionalPart[(n^4+3)^(1/4)]; %t A184538 q[n_]:=Floor[1/p[n]]; %t A184538 Table[q[n],{n,1,80}] %Y A184538 A184536. %K A184538 nonn %O A184538 1,1 %A A184538 _Clark Kimberling_, Jan 16 2011