A184540 Number of (n+2) X 3 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.
45, 89, 147, 220, 309, 415, 539, 682, 845, 1029, 1235, 1464, 1717, 1995, 2299, 2630, 2989, 3377, 3795, 4244, 4725, 5239, 5787, 6370, 6989, 7645, 8339, 9072, 9845, 10659, 11515, 12414, 13357, 14345, 15379, 16460, 17589, 18767, 19995, 21274, 22605, 23989
Offset: 1
Keywords
Examples
Some solutions for 4 X 3: ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0 ..0..0..1....0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....0..0..1 ..0..1..1....0..1..1....0..0..1....1..1..1....0..1..1....0..1..1....1..1..0 ..1..0..1....1..0..0....0..1..0....1..1..1....1..1..0....0..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184548.
Formula
Empirical: a(n) = (84 + 149*n + 36*n^2 + n^3) / 6. Corrected by Colin Barker, Apr 12 2018~
Conjectures from Colin Barker, Apr 12 2018: (Start)
G.f.: x*(45 - 91*x + 61*x^2 - 14*x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
Comments