cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184543 Number of (n+2) X 6 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

220, 537, 1048, 1837, 3024, 4774, 7307, 10909, 15944, 22867, 32238, 44737, 61180, 82536, 109945, 144737, 188452, 242861, 309988, 392133, 491896, 612202, 756327, 927925, 1131056, 1370215, 1650362, 1976953, 2355972, 2793964, 3298069, 3876057
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 4 of A184548.

Examples

			Some solutions for 4 X 6:
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..1
..0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..1..1....0..0..0..0..0..1
..0..0..0..0..1..1....0..0..0..1..1..0....0..0..0..1..0..0....1..1..1..1..1..0
..0..1..1..1..1..0....1..1..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..0
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/720)*n^6 + (11/240)*n^5 + (89/144)*n^4 + (209/48)*n^3 + (18317/360)*n^2 + (1231/10)*n + 41.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(220 - 1003*x + 1909*x^2 - 1922*x^3 + 1078*x^4 - 322*x^5 + 41*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)