A184544 Number of (n+2) X 7 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.
309, 792, 1627, 3024, 5313, 8989, 14767, 23648, 36997, 56634, 84939, 124972, 180609, 256695, 359215, 495484, 674357, 906460, 1204443, 1583256, 2060449, 2656497, 3395151, 4303816, 5413957, 6761534, 8387467, 10338132, 12665889, 15429643
Offset: 1
Keywords
Examples
Some solutions for 4 X 7: ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1 ..0..0..0..0..0..0..1....0..0..0..0..0..1..1....1..1..1..1..1..1..1 ..0..0..0..0..0..1..1....0..0..1..1..1..0..0....1..1..1..1..1..1..1 ..0..0..0..1..1..1..0....1..1..1..1..1..1..1....1..1..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184548.
Formula
Empirical: a(n) = (1/5040)*n^7 + (1/120)*n^6 + (53/360)*n^5 + (17/12)*n^4 + (5767/720)*n^3 + (3063/40)*n^2 + (11959/70)*n + 52.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(309 - 1680*x + 3943*x^2 - 5120*x^3 + 3955*x^4 - 1819*x^5 + 465*x^6 - 52*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Comments