A184545 Number of (n+2) X 8 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.
415, 1114, 2413, 4774, 8989, 16345, 28844, 49489, 82648, 134509, 213640, 331669, 504100, 751282, 1099549, 1582550, 2242789, 3133396, 4320151, 5883784, 7922575, 10555279, 13924402, 18199855, 23583014, 30311215, 38662714, 48962143, 61586494
Offset: 1
Keywords
Examples
Some solutions for 4 X 8: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184548.
Formula
Empirical: a(n) = (1/40320)*n^8 + (13/10080)*n^7 + (83/2880)*n^6 + (13/36)*n^5 + (15967/5760)*n^4 + (19201/1440)*n^3 + (121183/1120)*n^2 + (12673/56)*n + 64.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(415 - 2621*x + 7327*x^2 - 11699*x^3 + 11605*x^4 - 7310*x^5 + 2861*x^6 - 641*x^7 + 64*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Comments