A184547 Number of (n+2) X 10 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.
682, 2000, 4837, 10909, 23648, 49489, 99872, 194245, 364432, 660821, 1160932, 1981045, 3291704, 5338066, 8466235, 13156911, 20067894, 30087214, 44398911, 64563765, 92617576, 131189919, 183646650, 254259817, 348409036, 472818827
Offset: 1
Keywords
Examples
Some solutions for 4 X 10: ..0..0..0..0..0..1..1..1..1..1....0..0..0..0..0..0..0..0..0..1 ..0..0..1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0..0..1 ..0..0..1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0..1..0 ..1..1..1..1..1..1..1..1..1..1....0..0..0..0..0..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A184548.
Formula
Empirical: a(n) = (1/3628800)*n^10 + (1/48384)*n^9 + (83/120960)*n^8 + (107/8064)*n^7 + (28573/172800)*n^6 + (5323/3840)*n^5 + (1434973/181440)*n^4 + (366371/12096)*n^3 + (2399357/12600)*n^2 + (151541/420)*n + 91.
Conjectures from Colin Barker, Apr 14 2018: (Start)
G.f.: x*(682 - 5502*x + 20347*x^2 - 44828*x^3 + 64744*x^4 - 63833*x^5 + 43442*x^6 - 20156*x^7 + 6118*x^8 - 1104*x^9 + 91*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
Comments