cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A184539 Number of (n+2)X(n+2) binary arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

45, 193, 631, 1837, 5313, 16345, 54543, 194245, 719905, 2725367, 10430675, 40158073, 155173369, 601154073, 2333701711, 9075257125, 35345417073, 137846719279, 538258108483, 2104099248441, 8233431070825, 32247604093423
Offset: 1

Views

Author

R. H. Hardin Jan 16 2011

Keywords

Comments

Diagonal of A184548

Examples

			Some solutions for 4X4
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1
..0..0..1..1....0..0..0..1....0..0..0..0....0..0..0..1....0..1..1..1
..1..1..0..1....0..0..1..1....0..0..1..1....0..0..0..1....0..1..1..1
..1..1..0..1....0..0..1..1....1..1..0..0....0..0..0..1....0..1..1..1
		

A184540 Number of (n+2) X 3 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

45, 89, 147, 220, 309, 415, 539, 682, 845, 1029, 1235, 1464, 1717, 1995, 2299, 2630, 2989, 3377, 3795, 4244, 4725, 5239, 5787, 6370, 6989, 7645, 8339, 9072, 9845, 10659, 11515, 12414, 13357, 14345, 15379, 16460, 17589, 18767, 19995, 21274, 22605, 23989
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 1 of A184548.

Examples

			Some solutions for 4 X 3:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..1..1....0..0..0....0..0..1....0..0..1....0..1..1....0..0..1
..0..1..1....0..1..1....0..0..1....1..1..1....0..1..1....0..1..1....1..1..0
..1..0..1....1..0..0....0..1..0....1..1..1....1..1..0....0..1..1....1..1..1
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (84 + 149*n + 36*n^2 + n^3) / 6. Corrected by Colin Barker, Apr 12 2018~
Conjectures from Colin Barker, Apr 12 2018: (Start)
G.f.: x*(45 - 91*x + 61*x^2 - 14*x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)

A184541 Number of (n+2) X 4 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

89, 193, 340, 537, 792, 1114, 1513, 2000, 2587, 3287, 4114, 5083, 6210, 7512, 9007, 10714, 12653, 14845, 17312, 20077, 23164, 26598, 30405, 34612, 39247, 44339, 49918, 56015, 62662, 69892, 77739, 86238, 95425, 105337, 116012, 127489, 139808, 153010
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 2 of A184548.

Examples

			Some solutions for 6 X 4:
..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..1....0..0..0..1
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..1....0..1..1..1
..0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1....0..1..1..1
..0..0..1..0....0..0..1..0....0..1..0..0....0..0..0..1....1..1..1..1
..0..1..1..0....0..0..1..1....1..1..0..0....0..0..0..1....1..1..1..1
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/24)*n^4 + (3/4)*n^3 + (383/24)*n^2 + (201/4)*n + 22.
Conjectures from Colin Barker, Apr 12 2018: (Start)
G.f.: x*(89 - 252*x + 265*x^2 - 123*x^3 + 22*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A184542 Number of (n+2) X 5 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

147, 340, 631, 1048, 1627, 2413, 3461, 4837, 6619, 8898, 11779, 15382, 19843, 25315, 31969, 39995, 49603, 61024, 74511, 90340, 108811, 130249, 155005, 183457, 216011, 253102, 295195, 342786, 396403, 456607, 523993, 599191, 682867, 775724, 878503
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 3 of A184548.

Examples

			Some solutions for 4 X 5:
..0..0..0..0..0....0..0..0..0..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..1..1....0..0..0..0..1....0..0..0..1..1....0..0..0..0..1
..0..0..1..0..0....0..0..1..1..1....0..1..1..0..0....0..0..1..1..0
..0..0..1..1..1....0..1..1..1..1....1..1..1..1..1....0..1..1..1..0
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/120)*n^5 + (5/24)*n^4 + (49/24)*n^3 + (739/24)*n^2 + (1659/20)*n + 31.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(147 - 542*x + 796*x^2 - 578*x^3 + 209*x^4 - 31*x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)

A184543 Number of (n+2) X 6 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

220, 537, 1048, 1837, 3024, 4774, 7307, 10909, 15944, 22867, 32238, 44737, 61180, 82536, 109945, 144737, 188452, 242861, 309988, 392133, 491896, 612202, 756327, 927925, 1131056, 1370215, 1650362, 1976953, 2355972, 2793964, 3298069, 3876057
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 4 of A184548.

Examples

			Some solutions for 4 X 6:
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..0..1
..0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..1..1....0..0..0..0..0..1
..0..0..0..0..1..1....0..0..0..1..1..0....0..0..0..1..0..0....1..1..1..1..1..0
..0..1..1..1..1..0....1..1..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..0
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/720)*n^6 + (11/240)*n^5 + (89/144)*n^4 + (209/48)*n^3 + (18317/360)*n^2 + (1231/10)*n + 41.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(220 - 1003*x + 1909*x^2 - 1922*x^3 + 1078*x^4 - 322*x^5 + 41*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A184544 Number of (n+2) X 7 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

309, 792, 1627, 3024, 5313, 8989, 14767, 23648, 36997, 56634, 84939, 124972, 180609, 256695, 359215, 495484, 674357, 906460, 1204443, 1583256, 2060449, 2656497, 3395151, 4303816, 5413957, 6761534, 8387467, 10338132, 12665889, 15429643
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 5 of A184548.

Examples

			Some solutions for 4 X 7:
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..1..1..1..1..1
..0..0..0..0..0..0..1....0..0..0..0..0..1..1....1..1..1..1..1..1..1
..0..0..0..0..0..1..1....0..0..1..1..1..0..0....1..1..1..1..1..1..1
..0..0..0..1..1..1..0....1..1..1..1..1..1..1....1..1..1..1..1..1..1
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/5040)*n^7 + (1/120)*n^6 + (53/360)*n^5 + (17/12)*n^4 + (5767/720)*n^3 + (3063/40)*n^2 + (11959/70)*n + 52.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(309 - 1680*x + 3943*x^2 - 5120*x^3 + 3955*x^4 - 1819*x^5 + 465*x^6 - 52*x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A184545 Number of (n+2) X 8 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

415, 1114, 2413, 4774, 8989, 16345, 28844, 49489, 82648, 134509, 213640, 331669, 504100, 751282, 1099549, 1582550, 2242789, 3133396, 4320151, 5883784, 7922575, 10555279, 13924402, 18199855, 23583014, 30311215, 38662714, 48962143, 61586494
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 6 of A184548.

Examples

			Some solutions for 4 X 8:
  0 0 0 0 0 0 0 0     0 0 0 0 0 0 0 0     0 0 0 0 0 0 0 0
  0 0 0 0 0 0 1 1     0 0 0 0 0 0 0 0     0 0 0 0 0 0 1 1
  0 0 0 0 0 1 0 1     0 0 0 0 0 0 1 1     0 0 0 0 0 1 0 0
  0 0 0 1 1 1 1 1     0 0 0 1 1 1 0 0     0 0 0 0 0 1 1 1
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/40320)*n^8 + (13/10080)*n^7 + (83/2880)*n^6 + (13/36)*n^5 + (15967/5760)*n^4 + (19201/1440)*n^3 + (121183/1120)*n^2 + (12673/56)*n + 64.
Conjectures from Colin Barker, Apr 13 2018: (Start)
G.f.: x*(415 - 2621*x + 7327*x^2 - 11699*x^3 + 11605*x^4 - 7310*x^5 + 2861*x^6 - 641*x^7 + 64*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A184546 Number of (n+2) X 9 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

539, 1513, 3461, 7307, 14767, 28844, 54543, 99872, 177207, 305112, 510719, 832788, 1325583, 2063717, 3148137, 4713439, 6936723, 10048219, 14343937, 20200617, 28093279, 38615698, 52504155, 70664842, 94205327, 124470514, 163083563
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 7 of A184548.

Examples

			Some solutions for 4 X 9:
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1..1
..0..0..0..0..0..0..0..0..0....0..0..1..1..1..1..1..0..1
..1..1..1..1..1..1..1..1..1....0..0..1..1..1..1..1..1..0
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/362880)*n^9 + (1/5760)*n^8 + (289/60480)*n^7 + (217/2880)*n^6 + (12949/17280)*n^5 + (28049/5760)*n^4 + (468401/22680)*n^3 + (210319/1440)*n^2 + (145955/504)*n + 77.
Conjectures from Colin Barker, Apr 14 2018: (Start)
G.f.: x*(539 - 3877*x + 12586*x^2 - 23898*x^3 + 29072*x^4 - 23429*x^5 + 12502*x^6 - 4270*x^7 + 853*x^8 - 77*x^9) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10.
(End)

A184547 Number of (n+2) X 10 binary arrays with each 3 X 3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

682, 2000, 4837, 10909, 23648, 49489, 99872, 194245, 364432, 660821, 1160932, 1981045, 3291704, 5338066, 8466235, 13156911, 20067894, 30087214, 44398911, 64563765, 92617576, 131189919, 183646650, 254259817, 348409036, 472818827
Offset: 1

Views

Author

R. H. Hardin, Jan 16 2011

Keywords

Comments

Column 8 of A184548.

Examples

			Some solutions for 4 X 10:
..0..0..0..0..0..1..1..1..1..1....0..0..0..0..0..0..0..0..0..1
..0..0..1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0..0..1
..0..0..1..1..1..1..1..1..1..1....0..0..0..0..0..0..0..0..1..0
..1..1..1..1..1..1..1..1..1..1....0..0..0..0..0..1..1..1..1..1
		

Crossrefs

Cf. A184548.

Formula

Empirical: a(n) = (1/3628800)*n^10 + (1/48384)*n^9 + (83/120960)*n^8 + (107/8064)*n^7 + (28573/172800)*n^6 + (5323/3840)*n^5 + (1434973/181440)*n^4 + (366371/12096)*n^3 + (2399357/12600)*n^2 + (151541/420)*n + 91.
Conjectures from Colin Barker, Apr 14 2018: (Start)
G.f.: x*(682 - 5502*x + 20347*x^2 - 44828*x^3 + 64744*x^4 - 63833*x^5 + 43442*x^6 - 20156*x^7 + 6118*x^8 - 1104*x^9 + 91*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
Showing 1-9 of 9 results.