cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184568 Number of (n+2)X5 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

This page as a plain text file.
%I A184568 #7 Jul 22 2025 09:37:46
%S A184568 545662,6803631,57374460,380532059,2113138210,10202200416,43935544294,
%T A184568 171891306894,619309263773,2076328840978,6531156334265,19403953247374,
%U A184568 54753242158853,147433311933367,380373129645753,943599791869542
%N A184568 Number of (n+2)X5 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
%C A184568 Column 3 of A184574
%H A184568 R. H. Hardin, <a href="/A184568/b184568.txt">Table of n, a(n) for n = 1..200</a>
%F A184568 Empirical: a(n) = (1/19437606570590208000000)*n^25
%F A184568 + (9661/620448401733239439360000)*n^24
%F A184568 + (19289/8617338912961658880000)*n^23
%F A184568 + (647623/1926858390475898880000)*n^22
%F A184568 + (7818869/185785244260761600000)*n^21
%F A184568 + (179204479/50048269882490880000)*n^20
%F A184568 + (6120818579/29194824098119680000)*n^19
%F A184568 + (143209419911/16133981738434560000)*n^18
%F A184568 + (923628988921/3259390250188800000)*n^17
%F A184568 + (7642143794531/1084637427793920000)*n^16
%F A184568 + (243608939835379/1739939207086080000)*n^15
%F A184568 + (1936163562822023/852215121838080000)*n^14
%F A184568 + (304569580619323823/9942509754777600000)*n^13
%F A184568 + (29005828878292128217/83517081940131840000)*n^12
%F A184568 + (233821500453548659/70300574023680000)*n^11
%F A184568 + (7270110226386747353/271159356948480000)*n^10
%F A184568 + (2420495398281155097653/13444984782028800000)*n^9
%F A184568 + (23339250455280961243/23518923816960000)*n^8
%F A184568 + (12862196280962074967/2910169866240000)*n^7
%F A184568 + (66716838431089951113047/4257578514309120000)*n^6
%F A184568 + (473698445981492045742353/10841056402176000000)*n^5
%F A184568 + (4365469476964635381733/46461670295040000)*n^4
%F A184568 + (6119481830014897449583/41557382875008000)*n^3
%F A184568 + (1591545230217707383/10601373182400)*n^2
%F A184568 + (106282373513353/1274816400)*n
%F A184568 + 5965
%e A184568 Some solutions for 4X5
%e A184568 ..0..0..0..3..3....0..0..0..0..1....0..0..0..1..1....0..0..0..0..1
%e A184568 ..0..0..0..3..3....0..0..0..2..3....0..0..0..1..2....0..0..0..2..2
%e A184568 ..0..0..0..3..3....0..0..2..2..1....0..0..0..3..3....0..0..1..1..2
%e A184568 ..0..1..1..0..1....0..0..3..2..1....0..1..2..2..2....0..0..1..1..3
%K A184568 nonn
%O A184568 1,1
%A A184568 _R. H. Hardin_ Jan 17 2011