cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184570 Number of (n+2)X7 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

This page as a plain text file.
%I A184570 #7 Jul 22 2025 09:37:59
%S A184570 9496395,179122657,2113138210,18803004899,136680720320,848542379467,
%T A184570 4626643143791,22587829272879,100176548344077,408222405584237,
%U A184570 1542895435045954,5451380899694523,18127035085729328,57057694316853427
%N A184570 Number of (n+2)X7 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
%C A184570 Column 5 of A184574
%H A184570 R. H. Hardin, <a href="/A184570/b184570.txt">Table of n, a(n) for n = 1..200</a>
%F A184570 Empirical: a(n) = (53/1256354263434365594763264000000)*n^31
%F A184570 + (887251/53050571962438211727261696000000)*n^30
%F A184570 + (168683833/53050571962438211727261696000000)*n^29
%F A184570 + (41695943/107607651039428421353472000000)*n^28
%F A184570 + (2966611997/87110955603346817286144000000)*n^27
%F A184570 + (2731091581/1161479408044624230481920000)*n^26
%F A184570 + (934969479473/6700842738718985945088000000)*n^25
%F A184570 + (71784126942161/9381179834206580323123200000)*n^24
%F A184570 + (3676674924849281/9381179834206580323123200000)*n^23
%F A184570 + (563822102281853/31375183391995251916800000)*n^22
%F A184570 + (83036861466787/117713530763618549760000)*n^21
%F A184570 + (449635445808107101/19422732575997060710400000)*n^20
%F A184570 + (477728343774895560181/757486570463885367705600000)*n^19
%F A184570 + (3984914175553439894747/279073999644589345996800000)*n^18
%F A184570 + (75296304543122414243729/279073999644589345996800000)*n^17
%F A184570 + (70202812023470878658099/16416117626152314470400000)*n^16
%F A184570 + (22342133059122888182221/390859943479817011200000)*n^15
%F A184570 + (538093024334021462801389/830577379894611148800000)*n^14
%F A184570 + (2442381065653362888003371/390188824071369523200000)*n^13
%F A184570 + (58251363958080569432189063/1124661904676300390400000)*n^12
%F A184570 + (3197480702491150929211393747/8690569263407775744000000)*n^11
%F A184570 + (8235918337333023060582879371/3676779303749443584000000)*n^10
%F A184570 + (303695701411023425123140222861/26175166948121038848000000)*n^9
%F A184570 + (146703475487334161319713918707/2908351883124559872000000)*n^8
%F A184570 + (1138074246303729762260088761137/6301429080103213056000000)*n^7
%F A184570 + (382639794160479617211461259329/735166726012041523200000)*n^6
%F A184570 + (6678667213399686650750546663/5672582762438592000000)*n^5
%F A184570 + (6218970366747150808423568309/3063194691716839680000)*n^4
%F A184570 + (76642858735900764443216317/30215185734621888000)*n^3
%F A184570 + (57745583617616433273949/27977023828353600)*n^2
%F A184570 + (32024932439911153349/36100888223400)*n
%F A184570 + 35316
%e A184570 Some solutions for 4X7
%e A184570 ..0..0..0..0..0..0..1....0..0..0..0..0..0..3....0..0..0..0..0..2..3
%e A184570 ..0..0..0..0..0..1..2....0..0..0..0..0..2..3....0..0..0..0..0..2..3
%e A184570 ..0..0..0..0..0..3..1....0..0..0..0..1..0..3....0..0..0..0..2..0..0
%e A184570 ..0..0..0..0..2..2..3....0..0..0..0..1..3..2....0..0..0..0..2..3..0
%K A184570 nonn
%O A184570 1,1
%A A184570 _R. H. Hardin_ Jan 17 2011