cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184571 Number of (n+2)X8 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

This page as a plain text file.
%I A184571 #7 Jul 22 2025 09:38:07
%S A184571 33351260,748499580,10202200416,103444456133,848542379467,
%T A184571 5891845723505,35627770917826,191432663548535,928188067899417,
%U A184571 4112020013610989,16817412144178637,64051659837968288,228872310887087218
%N A184571 Number of (n+2)X8 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
%C A184571 Column 6 of A184574
%H A184571 R. H. Hardin, <a href="/A184571/b184571.txt">Table of n, a(n) for n = 1..200</a>
%F A184571 Empirical: a(n) = (1/41634367755283133135585280000000)*n^34
%F A184571 + (1601/148577547675716279032872960000000)*n^33
%F A184571 + (542077/232996608855100528483368960000000)*n^32
%F A184571 + (116777753/361443457326502101878046720000000)*n^31
%F A184571 + (6080562217/187237312808605453155041280000000)*n^30
%F A184571 + (1781455743577/707340959499176156363489280000000)*n^29
%F A184571 + (719717589733/4573325169175707907522560000000)*n^28
%F A184571 + (1306220268863/158383555642448758702080000000)*n^27
%F A184571 + (3963468744882037/10453314672401618074337280000000)*n^26
%F A184571 + (68586589630711/4288539352780151004856320000)*n^25
%F A184571 + (357317876962793491/562870790052394819387392000000)*n^24
%F A184571 + (490601448632399591/20847066298236845162496000000)*n^23
%F A184571 + (3874026234161310389/4894528609151259299020800000)*n^22
%F A184571 + (710832152721594474097/30299462818555414708224000000)*n^21
%F A184571 + (976045901457707066617/1623185508136897216512000000)*n^20
%F A184571 + (15386033688329449503493/1165363954559823642624000000)*n^19
%F A184571 + (281743583253272622372034169/1138621918549924531666944000000)*n^18
%F A184571 + (5353134759742300841592539/1353086058882857435136000000)*n^17
%F A184571 + (103092441988364765692828075111/1908866157568991126618112000000)*n^16
%F A184571 + (14326813312025505925268674433/22724597113916561031168000000)*n^15
%F A184571 + (7903021423230805478367320683/1253194693782163292160000000)*n^14
%F A184571 + (236775495736369578196358799151/4370114829599338659840000000)*n^13
%F A184571 + (9193732496153533286175432221173/22943102855396527964160000000)*n^12
%F A184571 + (3255573919420174151256147711347/1274616825299807109120000000)*n^11
%F A184571 + (68439739709805838002894466449091/4886031163649260584960000000)*n^10
%F A184571 + (132437631115418929945028905292687/2016457305633028177920000000)*n^9
%F A184571 + (43705388600817390369710158307227/168038108802752348160000000)*n^8
%F A184571 + (1266937711800607406615267159/1483701603471360000000)*n^7
%F A184571 + (2418452375434800377101124575965119/1065991752717460208640000000)*n^6
%F A184571 + (56154030486781961766245142082679/11844352807971780096000000)*n^5
%F A184571 + (3072960621509500129944652477871/407972152274583536640000)*n^4
%F A184571 + (139728569944966575024454759/16189371122007283200)*n^3
%F A184571 + (946493352594223323198194773/147438915575423472000)*n^2
%F A184571 + (2493598780438407349/1002802450650)*n
%F A184571 + 75476
%e A184571 Some solutions for 4X8
%e A184571 ..0..0..0..0..0..0..2..2....0..0..0..0..0..0..0..3....0..0..0..0..0..0..0..0
%e A184571 ..0..0..0..0..0..0..2..3....0..0..0..0..0..0..2..3....0..0..0..0..0..0..0..1
%e A184571 ..0..0..0..0..0..2..0..1....0..0..0..0..1..1..0..1....0..0..0..0..0..0..1..2
%e A184571 ..0..0..0..0..1..3..0..3....0..0..0..0..1..2..1..1....0..0..0..0..0..2..1..0
%K A184571 nonn
%O A184571 1,1
%A A184571 _R. H. Hardin_ Jan 17 2011