This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A184572 #7 Jul 22 2025 09:38:14 %S A184572 107058241,2816118529,43935544294,503785839330,4626643143791, %T A184572 35627770917826,236912838360594,1389863286849772,7315301238941444, %U A184572 35019093954902897,154213012365058057,630709975793568592 %N A184572 Number of (n+2)X9 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order. %C A184572 Column 7 of A184574 %H A184572 R. H. Hardin, <a href="/A184572/b184572.txt">Table of n, a(n) for n = 1..200</a> %F A184572 Empirical: a(n) = (4793/452457366575488002837474673950720000000)*n^37 %F A184572 + (51103/9570191067401626381991238696960000000)*n^36 %F A184572 + (4917877/3785035885123130010866905251840000000)*n^35 %F A184572 + (15705320153/77017251923374993264596159037440000000)*n^34 %F A184572 + (403479410207/17366635237623772991036388802560000000)*n^33 %F A184572 + (4851601752143/2368177532403241771504962109440000000)*n^32 %F A184572 + (15462960490711/106264376453991617952145735680000000)*n^31 %F A184572 + (2746274235427991/320849859228826304526478737408000000)*n^30 %F A184572 + (10856490117519047/25464274541970341629085614080000000)*n^29 %F A184572 + (6456752239990781/351231372992694367297732608000000)*n^28 %F A184572 + (226622562233850109/321962091909969836689588224000000)*n^27 %F A184572 + (475881640585627280657/19317725514598190201375293440000000)*n^26 %F A184572 + (18685538511769681859/23115227111485013916175564800000)*n^25 %F A184572 + (78436996080074747430437/3120555660050476878683701248000000)*n^24 %F A184572 + (9085432735871849854181/12383157381152686026522624000000)*n^23 %F A184572 + (150187159136899643608847/7635464630275964506472448000000)*n^22 %F A184572 + (40977480814594448970681991/86535265809794264406687744000000)*n^21 %F A184572 + (5226774037191381140326999133/519211594858765586440126464000000)*n^20 %F A184572 + (13071005257064306496446488163/69893868538679982790017024000000)*n^19 %F A184572 + (98722865942539034676454307634913/32710330476102231945727967232000000)*n^18 %F A184572 + (694634392196058336866261194853/16468649202556001876705280000000)*n^17 %F A184572 + (80254478670048450027363402644633/157481457999441767945994240000000)*n^16 %F A184572 + (6421634521403488005941196166071713/1207357844662386887585955840000000)*n^15 %F A184572 + (7550105556722752711894650772163617/157481457999441767945994240000000)*n^14 %F A184572 + (121356034989018715751902496676123689/325057881255258008196218880000000)*n^13 %F A184572 + (1815930478138841589986222979052727/722707739944990630871040000000)*n^12 %F A184572 + (84748143544090618090953653122309/5798806216199122452480000000)*n^11 %F A184572 + (201185582615958792018429209453875081/2743995101505424744513536000000)*n^10 %F A184572 + (6973050061034384066468555069716721959/22104404984349254886359040000000)*n^9 %F A184572 + (42410046291974983194824317540349467/36840674973915424810598400000)*n^8 %F A184572 + (3288593362113975843795222673686912623/939515931225813237424128000000)*n^7 %F A184572 + (396373545443656122094834534124529867533/45801401647258395324426240000000)*n^6 %F A184572 + (20854343491187859889043913375883746431/1235910838100623365897216000000)*n^5 %F A184572 + (22057820267586548673537627400084129/882793455786159547069440000)*n^4 %F A184572 + (65189593181950361989190823489581/2452204043850443186304000)*n^3 %F A184572 + (2022025625886313819557910577/110579186681567604000)*n^2 %F A184572 + (224306318583025111397/34694360110800)*n %F A184572 + 151134 %e A184572 Some solutions for 4X9 %e A184572 ..0..0..0..0..0..0..0..1..3....0..0..0..0..0..0..0..0..0 %e A184572 ..0..0..0..0..0..0..1..2..3....0..0..0..0..0..0..0..0..3 %e A184572 ..0..0..0..0..0..0..1..3..1....0..0..0..0..0..0..1..3..1 %e A184572 ..0..0..0..0..0..0..2..0..3....0..0..0..0..0..0..3..3..2 %K A184572 nonn %O A184572 1,1 %A A184572 _R. H. Hardin_ Jan 17 2011