cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A184573 Number of (n+2)X10 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

318063303, 9696377100, 171891306894, 2213469458762, 22587829272879, 191432663548535, 1389863286849772, 8847094859463950, 50288280003912690, 259097398200707061, 1225103456113642803, 5371748111324539632
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 8 of A184574

Examples

			Some solutions for 4X10
..0..0..0..0..0..0..0..0..0..3....0..0..0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0..2..3....0..0..0..0..0..0..0..1..1..3
..0..0..0..0..0..0..0..1..0..2....0..0..0..0..0..0..0..1..2..0
..0..0..0..0..0..0..0..2..2..1....0..0..0..0..0..0..0..2..0..0
		

Formula

Empirical: a(n) = (673/181350051998613446979077070127104000000000)*n^40
+ (965677/462442632596464289796646528824115200000000)*n^39
+ (55869007/98247885313534537758994500629299200000000)*n^38
+ (14692207/146742929700158271190532326686720000000)*n^37
+ (1129481833003/88045757820094962714319396012032000000000)*n^36
+ (35144498153879/27555061243696386479111070233395200000000)*n^35
+ (25401235273163749/247995551193267478311999632100556800000000)*n^34
+ (262126995417151/38389404209484129769659385774080000000)*n^33
+ (3596914274137699/9332719339520164616768323584000000000)*n^32
+ (539235358252563887/28829987350995986783538669158400000000)*n^31
+ (1116387366983689356767/1411739380606835739916506444595200000000)*n^30
+ (231485648220727758173/7842996558926865221758369136640000000)*n^29
+ (2322340559452286223827/2351723106124997067993513984000000000)*n^28
+ (81605062321920105148379/2704481572043746628192541081600000000)*n^27
+ (16599486295341432111403/19317725514598190201375293440000000)*n^26
+ (97625742346088765429/4211276194400103749910528000000)*n^25
+ (174888755958896985910044011/293699356240044882699642470400000000)*n^24
+ (88489208847914976941793254377/6130158229965825690569759784960000000)*n^23
+ (896113550321153560129112114503/2762205684648632919861472788480000000)*n^22
+ (2747951381674061199065405244271/414330852697294937979220918272000000)*n^21
+ (8785427708895423890367179641428077/72343482216988005043990953984000000000)*n^20
+ (23628790084724156964201017870485871/11993787841237485046766921318400000000)*n^19
+ (23265331627981998133937028213755823239/827571361045386468226917570969600000000)*n^18
+ (10553549822849284259060835463023491/30049795244930518091028234240000000)*n^17
+ (38827441360182895772263834450498494341/10141805895164049855722029056000000000)*n^16
+ (969627877078730019758713838729373991/26688962882010657515057971200000000)*n^15
+ (21703826536213623030401303969738892503/72441470679743213255157350400000000)*n^14
+ (4182327134423349818635798965138531349/1950347287531548049177313280000000)*n^13
+ (353946924402717018399904311295348912463/26595644829975655216054272000000000)*n^12
+ (137399484184209533572268883565100391029/1920796571053797321159475200000000)*n^11
+ (6309671962132576848901067927195231043092297/18994757291151001708946050252800000000)*n^10
+ (675760525354911330698025546025089536579/509789513986876052306657280000000)*n^9
+ (141304268507668371503738345865177547189957/31406675415262899651035136000000000)*n^8
+ (775423336961362770909286840964803808189/60711409590907814465126400000000)*n^7
+ (4008183003568711530630026347248376762093/135412839652763951393955840000000)*n^6
+ (938628647546903640486120815258199628913/17302751733408727122561024000000)*n^5
+ (226211122595937892873492340247370663691/2996018342016338711123251200000)*n^4
+ (216326320315708236509529777041751493/2873165738044769266619520000)*n^3
+ (496967716499616196779836511031/10279294973506383552000)*n^2
+ (759115441294391109931/48134517631200)*n
+ 286599