cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184583 floor[(n-1/5)(1+r)], where r=(1+sqrt(5))/2; complement of A184582.

Original entry on oeis.org

2, 4, 7, 9, 12, 15, 17, 20, 23, 25, 28, 30, 33, 36, 38, 41, 43, 46, 49, 51, 54, 57, 59, 62, 64, 67, 70, 72, 75, 78, 80, 83, 85, 88, 91, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 119, 122, 125, 127, 130, 132, 135, 138, 140, 143, 146, 148, 151, 153, 156, 159, 161, 164, 167, 169, 172, 174, 177, 180, 182, 185, 187, 190, 193, 195, 198, 201, 203, 206, 208, 211, 214, 216, 219, 222, 224, 227, 229, 232, 235, 237, 240, 242, 245, 248, 250, 253, 256, 258, 261, 263, 266, 269, 271, 274, 276, 279, 282, 284, 287, 290, 292, 295, 297, 300, 303, 305, 308, 311, 313
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2011

Keywords

Crossrefs

Cf. A184582.

Programs

  • Mathematica
    r=(1+5^(1/2))/2; c=-1/5; s=r/(r-1);
    Table[Floor[n*r-c*r],{n,1,120}]  (* A184582 *)
    Table[Floor[n*s+c*s],{n,1,120}]  (* A184583 *)

Formula

a(n)=floor[(n-1/5)(1+r)], where r=(1+sqrt(5))/2.

A184734 a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3; complement of A184735.

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 11, 13, 14, 16, 18, 19, 21, 22, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 48, 50, 52, 53, 55, 56, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110, 111, 113, 115, 116, 118, 120, 121, 123, 124, 126, 128, 129, 131, 133, 134, 136, 137, 139, 141, 142, 144, 145, 147, 149, 150, 152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 168, 170, 171, 173, 175, 176, 178, 179, 181, 183, 184, 186, 188, 189, 191, 192, 194
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2011

Keywords

Comments

Differs from A184582 first at index n=137. - R. J. Mathar, Jan 29 2011

Crossrefs

Programs

  • Mathematica
    r=(1+sqrt(5))/2, h=1/3; s=r/(r-1);
    Table[Floor[n*r+h],{n,1,120}]  (* A184734 *)
    Table[Floor[n*s+h-h*s],{n,1,120}]  (*A184735 *)

Formula

a(n)=floor(nr+h), where r=(1+sqrt(5))/2, h=1/3.

A382116 a(n) = floor(n*g+(g-1)/2), where g is the golden ratio.

Original entry on oeis.org

0, 1, 3, 5, 6, 8, 10, 11, 13, 14, 16, 18, 19, 21, 22, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 56, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 77, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105
Offset: 0

Views

Author

Jeffrey Shallit, Mar 16 2025

Keywords

Comments

Differs from A184734(n) and A184582(n) at n = 27.
Consists of the values of A382113 in ascending order.

Crossrefs

Programs

  • Mathematica
    Table[Floor[n*GoldenRatio+(GoldenRatio-1)/2],{n,0,65}] (* James C. McMahon, Mar 23 2025 *)
Showing 1-3 of 3 results.